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Abstract

We develop methodology for estimating and assessing the uncertainty of the to-
tal fertility rate over time. The estimates are based on multiple imperfect estimates
from different data sources, including surveys and censuses. We take account of mea-
surement error by decomposing it into bias and variance, and estimate both by linear
regression on data quality covariates. We estimate the total fertility rate for seven
countries in western Africa using a local smoother, and we assess uncertainty using
the weighted likelihood bootstrap. We found that taking differences in data quality
between observations into account gave better calibrated confidence intervals and re-
duced bias.
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1 Introduction

Estimating demographic indicators is challenging for many developing countries because of
limited data and varying data quality. This is illustrated in Figure 1 for Burkina Faso in
western Africa. The black and red dots are nationally representative observations of the
total fertility rate in Burkina Faso, constructed using age-specific fertility rates. In the
period from 1960 until the mid 1970s, there are very few observations for the TFR. After
1970 the number of observations increases, but the observations are very spread out because
of issues with data quality, e.g. observations are biased because of the collection process, or
measured with large errors.
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Figure 1: Observations of the total fertility rate in Burkina Faso, and UN estimates.

The United Nations Population Division produces estimates of the total fertility rate
from 1950 up to the most recent five-year period for all countries in the world (United
Nations, Department of Economic and Social Affairs, Population Division 2007). UN ana-
lysts estimate the fertility rates in an iterative fashion: initially age-specific fertility rates
are estimated based on all available nationally representative data, combined with expert
knowledge of the reliability of the different subsets of observations (e.g. known issues with
a particular survey or census, or general knowledge on undercounts or overcounts of certain
retrospective estimates of fertility rates). The initial fertility estimates are combined with
estimates of mortality and migration to derive estimates of population counts. The popula-
tion count estimates are then compared to (bias-adjusted) census counts. If estimated and
observed population counts differ significantly, the estimates of the three input components
of the population counts are reconsidered. Uncertainty in these input components allows for
adjustments of the initial input values until population estimates and observations are in
agreement. The UN estimates or Burkina Faso are shown in Figure 1.



The UN estimates for the TFR are generally considered to be of fairly good quality and
are widely used. The observations from Demographic and Health surveys, shown in red in
Figure 1, are also considered to be of good quality and are widely used. Figure 1 shows that
when examining the total fertility rate in Burkina Faso, different conclusions about its level
and trend can be drawn depending on whether the UN estimates or the DHS estimates are
being used in the analysis. What is “the true TFR” in Burkina Faso? The DHS observations
are not necessarily equal to the true TFR as these are observed TFR levels in subsets of
the population, with measurement errors and possible biases. The UN estimates are based
on observed TFR levels, as well as information on other demographic indicators, and are
therefore more likely to accurately estimate the TFR. However, the drawbacks of the UN
estimates are that the estimates are generated in a non-automated way, and no uncertainty
assessment is included in the analysis.

There are no standardized and reproducible methods for estimating fertility rates in
developing countries over time based on different data sources that assess the uncertainty
of the estimates. Most of the literature on fertility data has focused on the development of
indirect estimation methods (Brass 1964; Brass et al. 1968; Trussell 1975; United Nations
1983; Brass 1996; Feeney 1998). These techniques deal with biases that are caused by
recall lapse errors in retrospective estimates of fertility rates (Som 1973; Potter 1977; Becker
and Mahmud 1984; Pullum and Stokes 1997). The indirect estimation methods correct for
reporting biases by reconciling information from recent fertility (in the last year or years) with
lifetime fertility. They are typically based on one data source, and underlying assumptions
can lead to problems with respect to the accuracy of the indirect estimates (Moultrie and
Dorrington 2008). These methods deal with bias only, and not with differences in the variance
of the measurement error.

Methods have been developed for estimating child mortality rates for countries with lim-
ited data and varying data quality. Murray et al. (2007) used a local regression model to
estimate child mortality for all the countries in the world. In their approach data quality was
taken into account by excluding extreme outliers from the data set and allowing for biases
in observations from vital registration systems. They assessed model uncertainty by varying
the smoothing parameter of the local regression. This approach does not allow for biases
in observations from other sources, nor does it take differences in measurement errors be-
tween observations into account. Varying the smoothing parameter does not provide formal
statistical confidence bounds for the estimates (Silverwood and Cousens 2007). Hill et al.
(1998) and the Interagency Group for Child Mortality Estimation (UNICEF, WHO, World
Bank and UNPD, 2007) fitted piecewise linear splines to log-transformed child mortality
rates. In their approach, data quality is taken into account by assigning a weight to each
observation, which depends on its data quality covariates (e.g. data collection process) and
expert judgement. This approach does not adjust for biases in the different data sources.

In this paper we introduce a new methodology for estimating the total fertility rate
(TFR) over time and assessing its uncertainty for countries with limited data from multiple
sources with varying data quality. We first estimate average biases and measurement error
variance for subsets of TFR estimates with the same set of data quality covariates by linear
regression, based on what has been observed in different countries in the same region. We
then adjust the TFR estimates by subtracting the estimated biases, and assign weights based



on the estimated measurement error variances. Next we estimate the TFR trajectories by
applying a weighted local smoother to the bias-adjusted TFR estimates. Finally, we use the
weighted likelihood bootstrap to derive statistical confidence intervals for our estimates.

Assessing the accuracy of an estimation method, including its uncertainty assessment,
is important to validate whether modeling assumptions hold, but it is often not done. We
describe model calibration criteria to assess the accuracy of our methods.

We apply our methodology to data from seven countries in western Africa. Some of
these countries have been experiencing some of the highest fertility rates in the world in
recent years. We first describe the data, and then we describe how to analyze bias and
measurement error variance for different data sources, estimate the TFR over time, carry out
the uncertainty assessment and validate the model. We present the results of the modeling
approach for the TFR in the seven countries and compare the results of our method, that
takes data quality into account, to the results of a similar method that treats all observations
equally.

2 Data

We use a data set consisting of nationally representative observations of the total fertility
rate for seven countries in western Africa (Burkina Faso, Gambia, Guinea, Mali, Mauritania,
Niger and Senegal). All the observations were collected retrospectively; they were based on
asking women about the number of births in some period in the past (e.g. the number of
births in the last year before the survey/census) or complete birth histories (birth of their
first child, second child, etc.). The observations come from various sources, retrospective
periods, and time spans.

The observations are from censuses and surveys, with surveys divided into two groups:
Demographic Health Surveys (DHS), including the World Fertility Surveys, and other sur-
veys. The retrospective estimates of the TFR as given by the DHS are based on complete
birth histories. The birth history data are tabulated into different periods; the DHS gener-
ally uses 0-3 or 0-4 years before the survey as the most recent period. This is considered to
give a more robust estimator of age-specific fertility rates than calculating the rates based on
the births in the last year before the survey. Censuses and non-DHS surveys generally only
collect lifetime fertility and /or recent fertility (in the past year), instead of full or truncated
birth histories because of time and cost constraints.

Figure 2 shows the observations in each of the seven countries. For each observation,
the horizontal line points from the midpoint of the observation period to the year of data
collection to visualize the recall period. The estimates as published by the United Nations
in 2007 are shown in grey (United Nations, Department of Economic and Social Affairs,
Population Division 2007).

For each observation, four data quality covariates were available: source, period before
survey (PBS), direct/indirect estimation method, and time span. Source is either Census,
Demographic and Health Survey (DHS), or other survey. Period before survey is the midpoint
of the period before the survey to which the retrospective estimate refers. Time span is the
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Figure 2: Direct observations (dot) and indirect observations (cross) for different data
sources. The black horizontal line extends from the midpoint of the observation period
to the year of data collection. The UN estimates are plotted as grey circles.



Table 1: Summary of fertility data set for seven countries in western Africa. The number
of observations for each observed combination of the data quality covariates: Source, Period
Before Survey (PBS — based on the midpoint of the period before the survey to which the
retrospective estimate refers), Direct (specifying whether the observation is a direct or an
indirect estimate), and Time Span (the number of years that the observation refers to).

’ Combination \ Source \ PBS \ Direct \ Time span \ # Obs. ‘

1 Census | 0-1 Year No 1 Year 18
2 Census | 0-1 Year Yes 1 Year 20
3 Survey | 0-1 Year No 1 Year 12
4 Survey | 0-1 Year Yes 1 Year 12
5) Survey | 1-5 Years No 3 Years 1
6 DHS 1-5 Years No 3 Years 15
7 DHS 1-5 Years No 4-5 Years 7
8 DHS 1-5 Years Yes 3 Years 13
9 DHS 1-5 Years Yes 4-5 Years 23
10 DHS 1-5 Years Yes 5+ Years 1
11 DHS | 5-10 Years | Yes 4-5 Years 23
12 DHS | 5-10 Years | Yes 5+ Years 22
13 DHS | 10+ Years | Yes 4-5 Years 50

length of the observation period in years. Table 1 summarizes the 13 combinations of data
quality covariates observed in the data set.

The data quality covariate “Direct” in Table 1 divides the data set into direct and in-
direct estimates. Direct estimates are observations based on the reported number of births
in a certain period. Indirect estimates are constructed using indirect estimation methods,
which have been developed to correct for recall lapse biases in retrospective observations
of fertility rates, as described in the introduction. The indirect techniques rely on the use
of the P/F ratio (Brass 1964, 1968), which compares cumulated cohort fertility to cumu-
lated period fertility. The assumptions underlying this method are that fertility and its age
distribution are constant over time, and that the fertility of non-surviving women is equal
to the fertility of surviving women (whose number of children is reported). Under these
assumptions cohort and period fertility are equal, and deviations from equality are used to
adjust the observed fertility rates. Several variations of the P/F ratio are used to relax these
assumptions (Trussell 1975; United Nations 1983; Feeney 1998). However, because of the
problems with the indirect estimation techniques (Moultrie and Dorrington 2008), indirect
estimates can be biased too. Therefore direct estimates are included in the data set as well
as indirect ones.



3 Methods

We now describe our methodology, which consists of four steps. First, the bias for each TFR
observation is estimated by regression on the data quality covariates, and subtracted from
the observation. Then the measurement error variance is estimated, also by regression on
data quality covariates. Next, the TFR trajectory for each country is estimated by weighted
local smoothing of the bias adjusted observations, the weights being the reciprocals of the
estimated measurement error variances. Finally, we assess the uncertainty of our TFR
estimates using the weighted likelihood bootstrap.

3.1 Modeling data quality

Some observations of the TFR are better than others, depending on the quality of the
underlying data. We decompose data quality into two components: bias and measurement
error variance. Bias refers to systematic over- or underestimation of the TFR, due, for
example, to the observation being based on an unrepresentative sample of the population
because of missing data or selection bias. Measurement errors occur randomly during the
data collection process, and include sampling and non-sampling errors. Sampling errors
occur if the observation is based on a subset of the population. Non-sampling errors are
errors that are made during the data collection and input. Unlike sampling errors, non-
sampling errors have many different sources and are often hard to detect and control. For
many estimates of fertility rates, non-sampling errors are bigger (United Nations 1982).

Previous work on the quality of demographic estimates has usually not distinguished
between bias and variance, and we emphasize the importance of doing so because these are
distinct and can point in different directions. For example, some observations can have large
biases but small measurement errors, while others are unbiased but less precise. Therefore it
is important to account for bias and variance separately. We deal with bias by adjusting the
observations, and with variance by weighting them. For example, a biased observation with
small measurement error variance is adjusted and then assigned a high weight. An unbiased
observation with large measurement error variance is not adjusted but gets assigned a low
weight.

Our probability model for observation y.s (in year ¢ = 1,...,T, for observation s =
1,...,nct> iS

ycts|fct ~ N(fct + 5ctsaa(2;t5) (t = 17 cee 7Tc;s = 17 s 7nct)7

where vy is the s-th estimate of the TFR for country c in year ¢, f. is the unobserved true
TFR in year ¢ for country ¢, d.s is the bias of observation y.s, and o2, is the observation-
specific error variance. We use data quality covariates to assess the bias and error variance of
each TFR estimate, extending the work by Hill et al. (1998) and the Interagency group for
child mortality estimation (UNICEF, WHO, World Bank and UNPD, 2007) on differences
in error variance in child mortality rates, and the work of Gerland (2007) on examining the
associations between data quality covariates and the data quality of mortality and fertility

rate estimates. In our approach, we use linear regression to estimate how bias and error



variance depend on the data quality covariates, and we combine the observations from the
seven countries in western Africa to estimate both.

Estimating bias

Bias is estimated as a function of the data quality covariates, using linear regression. The
advantage of this approach, as compared to indirect estimation methods, is that no assump-
tions are made about the age structure of the fertility rates or the trends in fertility over time.
Multiple data sources are modeled and adjusted simultaneously, and biases are estimated
based on what has been observed in the seven countries in western Africa.

To examine the association between bias and the data quality covariates, unbiased esti-
mates of the TFR are needed. By saying an estimate is unbiased, we do not mean that it is
correct or even necessarily of high quality; we mean that it does not substantially over- or
underestimate the TFR. Here, we assume that the estimates of the TFR published by the
United Nations Population Division (United Nations, Department of Economic and Social
Affairs, Population Division 2007), are unbiased, so that E[uy] = fu, where u, denotes the
UN estimate for country c, year t. We take the published UN estimates as the least biased
available because they are based on the UN analysts’ knowledge of the shortcomings of the
multiple data sources used, as well as information on mortality, population counts and mi-
gration to ensure internal consistency of intercensal birth cohorts. Note that using the UN
estimates as unbiased estimates of the TFR does not imply that the estimates of the TFR
that are derived with this approach, will be necessarily equal to the UN estimates; here the
UN estimates are used only to determine average biases for observations with the same set
of data quality covariates.

With the UN estimates taken as unbiased estimates of the TFR, the bias d. of observa-
tion y.. is the expected value of the difference d.s = yos — uee between the observation and
the UN estimate, so that E[d.s| = dus. We estimate the biases d5 by regressing ds on the
data quality covariates using the model

E[dcts] = CCcts/Ba

where the row x., of the design matrix X contains the data quality covariates. Thus the
biases 6. can be estimated from the relationship 0.5 = @ois3.

The next question is which predictors to include in the bias regression model. There are
four data quality covariates, and each of these is a categorical variable that can take several
values. We code these as dummy variables and consider the possibility of including or exclud-
ing each of them. Dummy variables for the individual DHS surveys (each of which generates
multiple observations), as well as the observation year, year of data collection and the level of
the TFR (as given by the UN estimates) are also candidates to put into the model. To select
the best model we use Bayesian model selection (Raftery 1995). Specifically we consider all
possible subsets of predictors and choose the one with the best value of BIC. This is done
using the bicreg function from the BMA package in the statistical language R (Raftery,
Painter, and Volinsky 2005), available at http://cran.r-project.org/web/packages/BMA.



The estimated biases Scts are then subtracted from the observation to get the bias-adjusted
observations

~

Zets = Yets — 50155

~ N(fctvpgts)v (1>

where p?% is the observation-specific error variance of the bias-adjusted observation.

Estimating measurement error variance

A similar approach is used for estimating the measurement error variances, specifically the
values of p?, in Eq. (1). We assume that the absolute differences between the UN estimates
and the bias-adjusted observations, z.s, are proportional to the absolute differences between
bias-adjusted observations and the true TFR, so that

E‘ths - uct| X E|ths - fct|-
It follows from Eq. (1) that E|zes — fu| = \/gpcts, and so

E|ths - uct’ X Pcts-

We can therefore estimate the association between the data quality covariates and the relative
differences in p.s between observations using the regression model

E|ths - uctl - wcts)‘a

where the row wgs of the design matrix W contains the data quality covariates that are
associated with error variance and A is the vector of regression coefficients. Thus p.s o
wqsA. Variable selection is done in the same way as for the bias regression.

3.2 Estimating TFR Trajectories

We apply a local smoother (Cleveland and Devlin 1988; Cleveland et al. 1992; Loader
1999) to the bias-adjusted estimates, weighted by the reciprocals of their estimated error
variances, to estimate the annual country-specific TFR. A quadratic polynomial is fitted to
the bias-adjusted observations in a neighborhood of t* to estimate the TFR in year t*. The
observations within the neighborhood are weighted by the product of the distance and error
variance weights. Smaller distance weights are assigned to observations that are farther
away from year t*. The error variance weight is the reciprocal of the error variance, so that
observations with larger error variance are less influential when estimating the TFR in year
t*. When fitting the local smoother, the size of the neighborhoods and the distance weights of
the observations depend on a smoothing parameter a.. This is estimated by cross-validation
based on the data sets for all countries combined; « is chosen to minimize the overall mean
squared error when leaving out observations one at the time. We use the R function Locfit
(Loader 1999) to carry out the local smoothing.
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We assess uncertainty of the TFR trajectories using the weighted likelihood bootstrap
(Newton and Raftery 1994). This is similar to the standard bootstrap (Efron 1979), except
that where the standard bootstrap resamples data points, the weighted likelihood bootstrap
gives a weight to every data point that is sampled from a Dirichlet distribution. The weighted
likelihod bootstrap works better in our case because the fit of the local smoother to resampled
bootstrapped data breaks down if no or few data points at the end points of the observation
period get resampled. In the weighted likelihood bootstrap no data points get left out, and
so this problem does not arise.

The weighted likelihood bootstrap works as follows for our data, to sample B bootstrap
replicates. For b=1,..., B we cycle through the following steps:

1. For each country ¢, sample bootstrap weights pg’l for observation y.s from the distri-
bution
(p1,- .., pm) ~ Dirichlet,,(1,...,1),

with m = ZtT;l net, the total number of observations in country ¢. The
Dirichlet,, (1, ..., 1) distribution is uniform in the sense that it gives equal probability
to all values of the vector (pi,...,py,) such that p; + ...+ p, = L.

9. Estimate the biases 6

s using weighted regression, based on the data set of all countries
and

0,2

Yets ™~ N fct + 5ctsa 5
(b)

pcts

where o2 is the error variance for all observations combined. The bias-adjusted obser-
vations are given by 2z =y, — 6.

(b)

cts

p2(b)

b cts

Zzgtg ~ N (fct7 (tb) ) .
pcts

3. Estimate the differences in error variance p,; using weighted regression, based on the

data set of all countries and

4. Estimate the TFR by fitting the local smoother to the bias-adjusted observations zgg,
(b)
cts

taking into account the differences in error variance p,. and the bootstrap weights

pg’l The distance weights and the local neighborhoods in the local smoother vary
by bootstrap replicate too, because the smoothing parameter « is re-estimated within

each bootstrap replicate.

3.3 Model validation

We validate the method by cross-validation, in which some observations are left out, while
the method is applied to the remaining observations (called the “training data set”). We
then assess how well the resulting predictive distributions agree with what actually happened
(the left-out observations). More precisely, we assess whether the predictive distributions
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are calibrated, meaning that the prediction intervals contain the truth the right proportion
of the time. We use the following measures of calibration: (a) the proportion of left-out
observations that fall outside their confidence intervals, (b) the average bias of the estimated
TFR compared to the left-out observation, (c) the standardized absolute prediction error,
and (d) the probability integral transform histogram of the left-out observations.

The confidence intervals for the left-out observations y.s are based on
Yets ™~ N(fct + gct&a ﬂgts)‘ (2)

In Eq. (2), fct is the median TFR, Scts is the estimated bias, and 72, is the estimated
total variance, all estimated from the training data set and the data quality covariates of
observation y.,. The predictive variance of the observations is

ﬁCQts = Var(fCt) + ﬁztw
where the variance of the TFR Var( fct) and the observation-specific error variance p?,, are

estimated from the training data set.

The bias in the set of left-out observations, with respect to the estimated TFR, is esti-
mated by the mean of the differences between a bias-adjusted left-out observation and the
estimated TFR. The standardized absolute prediction error (SAPE) for observation y. is

defined by:
cts — gc s ~c
SAPE,, = \/?3“ Octs = Jarl
Vets

If our modeling assumptions hold, the mean SAPE is around 1, because F|yqs — Oets — fct| =
\/2/70us. A larger value of the mean SAPE indicates that the left-out observations are more
spread out than expected, while a smaller value says they are less so.

Our last calibration criterion is the probability integral transform (PIT) histogram. The
probability integral transform for the left-out observation y. is

i
PITcts — (I) (ycts cts fct> 7

Vets

where ®(-) is the cumulative distribution function of the standard normal distribution. From
Eq. (2) it follows that the PIT values should be approximately uniformly distributed between
0 and 1 if our model is valid. Calibration is compared between models by comparing the
histograms of the PIT values of the left-out observations. For a histogram with H bars, each
bar with width 1/H should contain about a proportion 1/H of the PIT values and thus have
height 1. The summary criterion for model comparison in terms of PIT values is given by
the area of the PIT histogram that is located above one, as this represents the deviation
from uniformity of the PIT values (Berrocal et al. 2007). We call this the “PIT area”. If
the TFR estimates are unbiased, a smaller value of the PIT area means a better calibrated
model.

For more complete details of our methodology, see Alkema (2008).
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Table 2: Results of bias regression model.

’ H Coefficient \ Std. Error \ t-value ‘

Intercept —0.74 0.11 —6.5
PBS 5 - 10 Years 1.07 0.10 11.0
PBS 10+ Years 1.30 0.10 13.4
Direct —0.45 0.09 —4.9
Year - 1954 0.02 0.003 6.3

4 Results

4.1 Bias regression

The covariates that were selected into the bias regression model are given by the recall period
of the observation, its estimation method and observation year. The results for the complete
data set are given in Table 2. For the seven countries in western Africa, retrospective
estimates that refer to periods more than 5 years in the past have a positive bias of over
one child compared to recall periods of less than 5 years. The regression coefficient is 1.07
children if the midpoint of the period before the survey is between 5 and 10 years (PBS
5—10), and 1.30 children if the period is more than 10 years (PBS 10+). Compared to
indirect estimates, a direct observation has a negative bias of almost half a child. Bias is
positively associated with the observation year: the longer ago the observation, the more
negative its bias. The first observation was in 1954; in that year the bias started with a large
negative value of —0.74 for indirect estimates with recall period less than 5 years, and this
bias became less negative at the rate of 0.02 children per year.

The estimated biases for each outcome category and different years are given in Table 3.
Note that the first observation with a recall period of more than 5 years refers to 1961. The
most recent estimate with a period before survey of more than 10 years was in 1994, and
in 1999 for a retrospective period between 5 and 10 years. The bias was essentially zero for
indirect estimates in 1994 with a recall period that is less than 5 years. Direct estimates tend
to underestimate fertility because of recall biases. Explanations for the underestimation of
TFR in the past include lower coverage of areas with higher fertility, age-misreporting and
memory /recall biases. This bias was large and negative in 1954, and decreased steadily in
absolute value, at the rate of 0.02 children per year. Biases also increase with the recall
period of the observation, illustrated when reading the table from left to right. Observations
with a recall period that is less than 5 years tend to have a slightly negative bias, while
observations with longer recall periods have a positive bias.

The positive bias of observations with longer recall periods is not surprising in light
of Figure 2, where almost all observations with long recall periods (long horizontal lines)
are higher than the UN estimates. Differences in survival rates partly explain the positive
bias of retrospective estimates: the estimates are based on the birth histories of the women
who survived until the year of the survey. Thus a positive correlation between fertility
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Table 3: Estimated biases for different observation years and outcome categories.

Obs. year | Direct PBS
< 5 Years ‘ 5 - 10 Years ‘ 10+ Years
1954 Yes —-1.19
No —0.74
1961 Yes —1.06 0.01 0.24
No —0.61
1970 Yes —0.89 0.18 0.40
No —0.44
1980 Yes —0.70 0.37 0.59
No —0.25
1994 Yes —0.44 0.63 0.85
No 0.01
1999 Yes —0.35 0.73
No 0.11
2004 Yes —0.25
No 0.20

and female survival results in overestimation of the total fertility rate. The positive biases of
retrospective estimates may also be due in part to age misreporting and other data reporting
issues (Ewbank 1981; United Nations 1982; Pullum 2006).

Figure 3(a) shows the outcomes of the bias regression model for Burkina Faso. The
observations in Burkina Faso are plotted with grey dots and the UN estimates are given by
the black circles. The black dots are the bias-adjusted observations, when all the observations
in the data set are used in the bias regression model. The bias-adjusted observations show
a more coherent trend than the uncorrected observations.

4.2 FError variance regression

The selected error variance regression model includes the following variables: collection year
after 1995, recall period up to one year and DHS in Mauritania in 1990. The estimated
measurement standard deviations p.s for the different outcome categories are given in Ta-
ble 4. The indicator for data collection year was included because residual plots showed
that the error variance was higher for observations that were collected before the mid 1990’s,
indicating that data quality improved after 1995. If an observation was based on one year of
data before the survey was collected, its error variance increased. The DHS in Mauritania
in 1990 had higher error variance than the other DHS’s.

The larger the standard deviation of an observation within a certain category, the less
informative that observation is about the TFR and the wider the confidence interval for the
TFR based on that observation alone. The confidence intervals for the TFR based on the
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Figure 3: Illustration of bias adjustment and difference in error variance for Burkina Faso:
(a) UN estimates (black circles) and observations y.s (grey dots), with the bias-adjusted
observations yes — dus (black dots), (b) Bias-adjusted observations (black dots), with the
95% confidence interval for the TFR based on a single observation, [y.s — 50,55 — 2Dt Yets —

dets + 2Pets|, shown for two observations (vertical black lines).

Table 4: Results of error variance regression: estimated measurement standard deviations,
pets for different outcome categories.

Observations from DHS Mauritania (1990)
No Yes
Category No. obs. \ Pets | No. obs. \ Dets

PBS >1, Before 1995 104 0.42 9 0.85
PBS 0-1, Before 1995 o1 0.74 0 -
PBS >1, After 1995 42 0.23 0 -
PBS 0-1, After 1995 11 0.55 0 -
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estimated standard deviations are given for two observations in Burkina Faso in Figure 3(b).
The comparison illustrates that the bias-adjusted observation that is further away from the
general trend had a larger estimated error variance, as expected.

These results underscore the importance of distinguishing between bias and variance. For
example, we found that direct estimates made in 1999 on the basis of retrospective data (PBS
> 5 years) had large biases but low variances, so our method adds a bias adjustment to these
estimates but then gives the adjusted estimates high weights. In contrast, indirect estimates
(with short recall periods) made before 1995 had little or no bias, but larger variances. Our
method does not adjust these estimates at all, but gives them relatively small weights.

4.3 TFR estimates

The TFR estimates and their uncertainties for each country are shown in Figure 4. The grey
lines in the plots are a random sample of TFR trajectories, given by the local smoother fits in
the weighted likelihood bootstrap. The solid black line is our TFR estimate and the dashed
lines show the annual quantile-based 95% confidence intervals. The UN estimates are plotted
in the same figure as a grey solid line with squares. In general, the UN estimates were within
or close to our 95% confidence intervals, except for lower UN estimates in Senegal from 1970
through the mid 1990s. We estimated a larger increase in fertility rates in the 1960s than
the UN did for Niger and Senegal, and a smaller increase in Burkina Faso. For Gambia, the
UN estimates showed a steeper decline during the second half of the observation period than
our results.

The confidence intervals for the TFR were wider for the years before the mid 1970s than
afterwards, for all the countries. Gambia had the most uncertainty about the past levels of
the TFR, because of the scarcity of data sources and in particular of DHS retrospective birth
histories, and the spread of the observations. The median width of its annual 95% confidence
intervals was 0.74 children. Its confidence intervals were narrowest around 2000 and in the
mid 1970s because these were periods with more observations. For the other countries, the
median width of the 95% confidence intervals was much smaller, at around 0.35 children.

4.4 Method validation and comparison

Our method takes account of the differences in data quality between data sources, but one
could ask whether this actually improved the estimates. We assessed this by comparing
our method with a method that is the same except that it does not adjust or weight the
observations for data quality. We will refer to the method that takes into account bias and
difference in measurement errors as the corrected method, and to the method that treats all
observations equally as the uncorrected method.

Figure 5 shows the confidence intervals for the TFR for both methods in the seven
countries in western Africa. The two methods differed most at the start of the observation
period, with the uncorrected method giving lower estimates than the corrected method.
For most countries the uncorrected method peaked in the mid 1980s, at a TFR that was
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Figure 4: Median estimates and confidence intervals for the TFR. The annual median esti-
mates are shown by the solid line and the annual 95% confidence intervals (CI) by vertical
lines. The grey lines are a random sample of TFR trajectories, given by the local smoother
fits in the weighted likelihood bootstrap. The observations are displayed as black dots and
the UN estimates by the grey line with squares.
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Table 5: Validation results for the corrected and uncorrected methods: Bias (the average
distance between left-out observations and the median TFR estimate), SAPE (the standard-
ized absolute prediction error), PIT area (the area above one in the PIT histogram), and the
proportion of left-out observations that falls outside their 80% and 95% confidence intervals.

Leaving out Method Bias | SAPE || PIT | Proportion of observations
area | <80 | >80 | <95 | >95
50 Observations || Corrected —0.02 || 1.06 | 0.05 || 0.08 | 0.11 | 0.04 0.04
Uncorrected || —0.06 1.00 | 0.11 | 0.12 | 0.04 | 0.03 0.01
DHS’s Corrected 0.03 1.23 | 0.14 || 0.14 | 0.13 | 0.04 0.07
Uncorrected || 0.21 1.08 | 0.19 || 0.07 | 0.14 | 0.01 0.04

higher than the estimate from the corrected method. In Gambia, the only country without a
DHS survey, the uncorrected method gave lower estimates than the corrected method for all
years. The confidence intervals were generally much narrower for the corrected method —
on average 40% narrower. In most cases, the UN estimates were inside the 95% confidence
intervals of both methods.

To validate the methods, we left out different subsets of the observations, implemented
the methods without them, and then compared the resulting predictive distributions with
the observations themselves. The subsets left out for this cross-validation exercise were:
(i) random subsets of observations: 10 different subsets of 50 observations, and (ii) one
DHS at a time (there were 22 DHS’s in total). Leaving out one survey at the time and
then examining how the left-out observations fit into the uncertainty assessment is the most
realistic scenario in terms of adding “new” observations to the data set, that are independent
of the observations that were already in the data set. We did this for the uncorrected method
as well as the corrected method.

The results are summarized for the two left-out categories in Table 5. The average
bias was 0.03 children or less for both categories for the corrected method, and somewhat
larger for the uncorrected method: 0.21 children for the left-out DHS’s. Uncertainty was
slightly underestimated in the corrected method, as shown by the standardized absolute
prediction error (SAPE), which is larger than one for both outcomes, and by the proportions
of observations that fell outside the confidence intervals.

The PIT histograms in Figure 6 do not show any systemmatic lack of calibration for
the corrected method, but they clearly indicate the bias in the uncorrected method. This
is confirmed by the better values of the PIT area for the corrected method compared to
the uncorrected method. Overall, we conclude that our corrected method is reasonably well
calibrated, and that taking account of data quality is worthwhile in that it removes the
systematic biases in the uncorrected method.
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Figure 5: 95% Confidence intervals for the TFR for the corrected method (grey), and the
uncorrected method (black). The solid line shows the annual median estimates and the 95%
confidence intervals are plotted with dashed lines. The observations are displayed as black
dots and the UN estimates by the grey line with squares.
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Figure 6: Histograms of the outcomes of the probability integral transforms for the left-out
observations when leaving out one DHS at a time for the corrected and the uncorrected
method.

5 Discussion

We have proposed a new approach to estimating the total fertility rate over time from multi-
ple data sources of varying quality, and applied it to seven countries in western Africa. Our
approach consists of four steps: bias adjustment, estimation of measurement error variance,
local smoothing of the bias-adjusted values with weights based on the error variance, and
uncertainty assessment using the weighted likelihood bootstrap. We assessed the results
by cross-validation, and found that our method was reasonably well calibrated. Compari-
son with a similar method that excludes the first two steps showed that taking account of
data quality removed clear biases and greatly reduced the average width of the confidence
intervals.

One limitation of our method is that a data source that is deemed “unbiased” is needed
to predict bias and measurement error variance. This data source does not have to be perfect
or even of high quality, but is required to have no systematic tendency to substantially over-
or underestimate TFR. We have used the existing UN estimates for this purpose. It would
also be possible to identify one of the common data sources, most likely the DHS’s with a
short recall period, as unbiased. However, when using one single data source as a baseline
for the analysis, data quality problems in that data source (such as those that we found
for the 1990 DHS in Mauritania) may well be missed. Also, for estimating the TFR for
multiple countries from the 1950s until the last year with observations, this data source will
not be available for all years and all countries. In future work, we plan to investigate how to
estimate the TFR and its uncertainty without using the UN estimates as an unbiased data
source.
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Our general approach could be applied with appropriate modifications to the estimation of
other demographic quantities, including mortality. However, our methodology was developed
for an aggregated rate (the TFR), while often age-specific rates are needed. The method
could be applied directly to age-specific fertility rates, but this has the disadvantage that
adherence to overall patterns is not guaranteed. A possible alternative would be to use our
present methodology in combination with age-specific fertility schedules.
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