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Abstract

Throughout most of adult lifespan, mortality increases linearly on a logarithmic scale. At

advanced ages, though, mortality levels off resulting in overestimating mortality if a Gom-

pertzian shape is assumed. Most commonly this mortality deceleration is measured by the

life-table aging rate, introduced by Horiuchi and colleagues, but also other methods were

used previously. In this paper we present two alternative approaches to determine the age

when mortality deceleration starts: 1) the age when mortality acceleration is at its maxi-

mum and b) the age when observed mortality deviates significantly from the exponential

increase. After a theoretical justification, we show with empirical data that these two new

methods are not only intuitively but also practically appealing.
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Background and Aim of Our Research

Throughout most of adult lifespan, mortality increases exponentially and is well approximated

by Gompertz’ equation µ(x ) = αe βx , where x indicates age. Gompertz (1825, p. 517) attributed

this age-specific exponential increase to “a deterioration, or an increased inability to withstand

destruction” (see also Vallin and Berlinguer (2006, p. 96)). In 1960, Strehler and Mildvan showed

in a more formal approach that the age-related mortality increase, as measured in the β param-

eter, can be interpreted in terms of a loss of vitality and environmental stress.

Eventually, the exponential increase levels off at higher ages as shown in Figure 1 (page 12).

As a result at these age, the Gompertz model, as indicated by the solid lines, is overestimating

mortality for both females and males. Models with an implicit logistic structure reflect the ob-

served mortality much better (Bongaarts, 2005; Thatcher, 1999; Thatcher et al., 1998; Zeng Yi

and Vaupel, 2003).

What is the reason for the levelling off? Data problems, e.g. an underreporting of deaths,

may occur as shown, for example by Elo and Preston (1997). It can not be considered a general

explanation, though, since the same pattern of deviation from the log-linear trend has been

observed in countries with highly reliable data and in non-human population in controlled

environments (e.g. Vaupel and Carey, 1993; Vaupel et al., 1998).

If data problems can be excluded there are basically two explanatory frameworks (see, for

instance, Horiuchi and Wilmoth, 1998). The individual risk hypothesis argues that the rate of

aging on the individual level slows down at advanced ages. Alternatively, the heterogenity hy-

pothesis emphasizes the compositional change of a population with increasing age rather than

a change on the individual level. Due to higher mortality of frailer individuals, the population

becomes more selected with increasing age, resulting in death rates increasing more slowly with

age than in homogenous populations (Vaupel et al., 1998, 1979; Vaupel and Yashin, 1985).

The goal of our paper is not to test which one of the two theories is supported by empirical

data. Our aim is rather to present previous approaches to measure deceleration in the age-

related mortality increase and suggest alternative methods. After their theoretical justification

for using those methods, we apply all methods in a case study. These empirical results show

that the new methods are not only theoretically appealing but mark also prominent positions

on the age-specfic curve of the force of mortality in a real case.
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Measuring Mortality Deceleration

Visual Measurement

This approach refers to the “common exercise in mortality research to calculate the logarithms

of age-specific death rates and plot them against age” (Horiuchi and Coale, 1990, p. 246).1 The

problem is, however, that it is rather difficult to tell from visual inspection alone exactly the

onset of the age-related deceleration.

Relative Derivative

Instead, Horiuchi and Coale (1990) suggest to use the life-table aging rate k (x ) which is the

relative derivative of the force of mortality µ (x ):

k (x ) =
d log

�

µ (x )
�

d x
(1)

Using the life-table aging rate (LAR) appears to be the most commonly used approach to

measure the deceleration in the age-related mortality increase (Carey and Liedo, 1995; Horiuchi

and Coale, 1990; Horiuchi and Wilmoth, 1997, 1998; Kannisto, 1996).

Despite its widespread adoption, we think that the relative derivative of the force of mortal-

ity,2 is not the only desirable way to measure mortality deceleration at advanced ages.

Absolute Derivatives

Speed Let’s assume that the force of mortality by age is the (one-dimensional) position of an

object over time. The first derivative of the object’s position with respect to time is speed (Feyn-

man et al., 1963). One way to measure the onset of deceleration of the age-related mortality

increase is, hence, to estimate the age when “mortality speed” is at its maximum (i.e. the age

when the second derivative is zero and the third derivative is negative at this age). This is not a

new suggestion of us. Despite assuming a different shape of the force of mortality and pursuing

a different estimation strategy, Lynch and Brown (2001) used this idea implicitly in their paper

on mortality compression and deceleration.

1To avoid confusion it should be pointed out that Horiuchi and Coale (1990) do not propose this method.
2Which is, of course, the derivative of the log hazard as denoted in Equation 1.
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Acceleration The first new method which we suggest is to go one step further than to look

at the speed of the force of mortality: The age when mortality acceleration reaches its maxi-

mum can be considered the onset of mortality deceleration. As we know from physics, acceler-

ation is the second derivative, and the point of maximum acceleration is the age when the third

derivative is zero and the fourth derivative is negative at this age. To our knowledge, maximum

mortality acceleration has not been used previously to measure mortality deceleration.

Deviation from the Gompertz-Makeham Curve

Our second and last suggestion is unrelated to derivatives. Rather, from an intuitive perspec-

tive, we argue that mortality starts decelerating when actual mortality falls significantly below

a Gompertz-Makeham curve. This is most easily done by a) assuming an alternative paramet-

ric model which fits mortality better at advanced ages (e.g. a logistic shape), b) fitting a corre-

sponding model and c) looking at the age when the upper band of the confidence band (cho-

sen at an arbitrary level; for example 99%) of the alternative model does not anymore include

the Gompertz-Makeham fit. It should be noted that the choice of alternative mortality model

is crucial in this case: depending on the model, the age when mortality deviates significantly

from the Gompertz-Makeham curve can vary greatly.

Empirical Case Study

Data and Methods

We use mortality data for women in England & Wales for the year 2004. The data have been

downloaded from the Human Mortality Database (University of California, Berkeley (USA), and

Max Planck Institute for Demographic Research, Rostock, (Germany), 2008). We assume that

the force of mortality by age follows a logistic shape:

µ (x ) =
αe βx

1+αe βx
+γ (2)

This model is appealing not only because it fits mortality at adult and old ages remarkably

well with only three parameters (Bongaarts, 2005; Thatcher, 1999). Moreover, as shown first

(to our knowledge) by Beard (1971),3 Equation 2 expresses the observed mortality of a popu-

3Beard refers in this publication from 1971 to earlier work of himself where he has shown it.

4



lation where each individual experiences a Gompertz-Makeham hazard with a Gamma frailty

distribution for the individuals.

The actual estimation follows the standard maximum likelihood approach as outlined, for

example, in Zeng Yi and Vaupel (2003), Thatcher et al. (1998), or Thatcher (1999).

In Table 1 we present the estimates for the Gompertz-Makeham model (µ (x ) = αe βx + γ)

and the model outlined in Equation 2.4

Results

Relative Derivative Assuming that Equation 2 captures mortality dynamics correctly, the rel-

ative derivative of the force of mortality µ (x ) is:

dµ(x )
d x

µ (x )
=

d log
�

µ (x )
�

d x
=

αβ eβ x

1+αeβ x −
α2β e 2β x

(1+αeβ x )2

αeβ x

αeβ x+1
+γ

(3)

The age, x ∗1, when the relative derivative reaches its maximum is where its second derivative

crosses 0:5

x ∗1 =
log

�Æ

γ
1+γ

α

�

β
(4)

Figure 2 illustrates our findings for the life-table aging rate (i.e. the relative derivative of the

force of mortality). The upper panel depicts with black + symbols observed death rates for

women in England & Wales in 2004. The blue and green lines refer to a Gompertz-Makeham

(blue) and logistic (green) mortality model fitted to the data. The lower panel plots the relative

derivative of the force of mortality (assuming a logistic model). We added vertical red reference

lines to both panels to indicate the age when the relative derivate reaches its maximum.

As known from many publications on the life-table aging rate (e.g. Horiuchi and Coale,

1990; Horiuchi and Wilmoth, 1998), the shape of the relative derivative of the force of mortality

is a parabola and reaches its maximum in our case at age 66.

Speed Assuming that Equation 2 captures mortality dynamics correctly, the first derivative

(i.e. the speed) of the force of mortality µ (x ) is:

4Since they were not necessary, we do not include standard errors for the Gompertz Makeham model here.
5And, of course, its third derivative at this age must be negative.
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µ′(x ) =
dµ (x )

d x
=
αβe βx

1+αe βx
−

α2βe 2βx

�

1+αe βx
�2 (5)

The age, x ∗2, when the first derivative reaches its maximum is:

x ∗2 =−
logα

β
(6)

The main difference between Figure 2 and Figure 3 is that the latter plots in the lower panel

the shape of the first derivative of the (logistic) force of mortality and adds a reference line in

both panels to indicate the age of maximum speed. In our empirical example the maximum

absolute speed is attained at about age 104.

Acceleration Assuming that Equation 2 captures mortality dynamics correctly, the second

derivative (i.e. the acceleration) of the force of mortality µ (x ) is:

µ′′(x ) =
∂ 2µ (x )
∂ x 2

=
αβ 2e βx

1+αe βx
−

3α2β 2e 2βx

�

1+αe βx
�2 +

2α3β 2e 3βx

�

1+αe βx
�3 (7)

The age, x ∗3, when the first derivative reaches its maximum is:

x ∗3 =
log
�

−
p

3−2
α

�

β
(8)

Figure 4 plots in its lower panel the second derivative of the force of mortality and denotes

the age of maximum acceleration with a vertical red line. We find that this age of 93 years is

located at a prominent position in the upper panel, namely, when the logistic fit diverges from

the Gompertz-Makeham fit.

Deviation from Gompertz-Makeham Figure 5 is similar to the upper panels of the previous

figures. Here, we added 99% confidence bands around the point estimate of the logistic fit. The

age when mortality deceleration sets in is when the logistic fit is significantly lower than the

Gompertz-Makeham fit, i.e. when the Gompertz-Makeham point estimates are not anymore

included in the confidence bands of the logistic fit. In our empirical case study, this age of 92.82

years is very close to the age of maximum acceleration.
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Summary

Our paper presents four different ways to measure mortality deceleration. We propose two

new methods (maximum acceleration, significant deviation from Gompertz-Makeham shape)

and contrast them with previously employed ones (relative derivative, speed). Our two new

methods find ages of mortality deceleration which are close to each other. Our choice of a

logistic mortality shape might have influenced that the age of onset of mortality deceleration of

the two previously employed methods are not located at prominent positions on the mortality

curve. We suggest, however, that our two newly proposed methods should be considered as real

alternatives to measure deceleration in the future due to their intuitive theoretical appeal and

our empirical findings presented in Figures 4 and 5.
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Tables and Figures
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Table 1: Estimates for Fitting a Gompertz and a Logistic Model to Female Mortality Data from

England & Wales in 2004

Model α̂ β̂ γ̂

Gompertz-Makeham 3.0330e-06 1.2076e-01 1.2526e-03

Logistic 3.5985e-06 1.2062e-01 1.0285e-04

(Stand. Errors) (1.0579e-07) (3.4870e-04) (3.4904e-05)
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Figure 1: Fitting a Gompertz Model to Observed Mortality in Japan for Females and Males in

1990
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Parameter Estimates: α β Log-Likelihood

Females: 4.184736e-06 1.171888e-01 1589700

Males: 2.223338e-05 1.025210e-01 1840096
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Figure 2: Upper Panel: Observed and Fitted Mortality; Lower Panel: Relative Derivative of Lo-

gistic Fit of Mortality; Red Vertical Reference Lines are Added in Both Panels to Indicate the Age

of the Maximum of the Relative Derivative
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The presented results are based on data for females in England & Wales in 2004 obtained from

the Human Mortality Database.
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Figure 3: Upper Panel: Observed and Fitted Mortality; Lower Panel: First Derivative of Logistic

Fit of Mortality (=Speed); Red Vertical Reference Lines are Added in Both Panels to Indicate the

Age of Maximum Speed
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The presented results are based on data for females in England & Wales in 2004 obtained from

the Human Mortality Database.
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Figure 4: Upper Panel: Observed and Fitted Mortality; Lower Panel: Second Derivative of Lo-

gistic Fit of Mortality (=Acceleration); Red Vertical Reference Lines are Added in Both Panels to

Indicate the Age of Maximum Acceleration
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The presented results are based on data for females in England & Wales in 2004 obtained from

the Human Mortality Database.
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Figure 5: Observed Mortality; Gompertz Mortality Fit; Logistic Mortality Fit and Its 99% Confi-

dence Interval; Age when Logistic Model Significantly Deviates from Gompertz Fit
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the Human Mortality Database.
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