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Abstract: In general demographic characteristics are positive in nature. In regression
models for positive observations analysis can often be based on either the log-normal or
the gamma model. Recently log-normal and gamma models are of interest in fitting data
arising from quality-improvement experiments. It is known that the gamma model with
the constant coefficient of variation and the log-normal model with constant variance
often give similar analysis. However, in the analysis of data from quality improvement
experiments neither the coefficient of variation nor the variance needs to be constant, so
that the two models do not necessarily give similar results. A choice needs to be made
between the gamma and the log-normal models. This article analyzes the effects of so-
cial factors in children survival times through joint generalized linear models, and many
interested social parameters have been detected in its mean and variance model.
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1. Introduction

Child mortality is an important factor of population growth and fertility of a nation.
Under-five mortality rate for the world dropped from 193 per thousand births in 1960 to
86 in 1998, which corresponds to 55 percent decrease (UNICEF, 2001). In Sub-Saharan
Africa, the reduction in mortality rates for children aged 5 and younger, between 1960
and 1989, was nearly 34 percent (from 261 to 173 per thousand births). For example, in
Ivory Coast, the same source indicates that under-five mortality rate decreased from 300
to 150 per thousand births between 1960 and 1998. Although much progress has been
made in terms of prevention and child care, under-five mortality rates in the Sub-Saharan
African region remain high, compared to the mortality rate of 6 per thousands births
observed in the industrialized countries in 1998 (UNICEF, 2001).

A number of studies have focused on the factors affecting children mortality (Manda,
1999; Kuate-Defo, 1992; Akoto and Tabutin, 1990; Pebley and Stupp, 1987; Martin et al.,
1983, among others). These researches showed that child mortality in developing countries

!Department of Statistics, Burdwan University, Burdwan, W.B., India

2Indian Statistical Institute, 203 B.T. Road, Kolkata-108, India
Communicating author, email id: dshankar@isical.ac.in



was mainly associated with measurable socio-economic conditions such as nutritional sta-
tus and poor living conditions. However, some unmeasured genetic, environmental and
behavioral components still remain non-negligible. In effect, children belonging to the
same family share certain unobserved characteristics (or heterogeneity), which may not
be sufficiently described by the covariates included in the earlier standard models (Guo
and Rodriguez, 1992). The ignorance of such family-level correlation may lead to biased
parameters estimates. This unobserved heterogeneity, also referred to as frailty (Vaupel
et al., 1979), operates at three different levels, at least: child, family and community (Sas-
try, 1997). At the family level, children from the same parents inherit common genetic
factors and usually grow up in the same household environment. Parents are also more
likely to adopt similar child care behavior for all their children. Genetic factors remain
the major component of the family-level frailty. However, each child has a proper suscep-
tibility to infection, independently of his family membership (Childs et al., 1992). This
idiosyncratic genetic factor remains the major child-level unobserve frailty component. In
addition, inside the common global family behavioral factor, parents may adopt a slightly
different prenatal and neonatal attitude from one child to the next: the length of the
breastfeeding period, the health care practice and the nutritional status, for example. At
the community level, the random effects are more likely of behavioural and environmental
nature.

During the last ten years, the unobserved heterogeneity has been intensively associated
to child mortality studies: Guo and Rodriguez (1992) and Guo (1993)applied a multivari-
ate proportional hazard model to capture the family-specific random effects on clustered
data from Guatemala; a logistic model with family random effects was used to examine
the frailty common to all children from same mothers in Brazil (Curtis et al., 1993) and
Bangladesh (Zenger, 1993), Ronsmans (1995) investigated the patterns of family-level
clustering in a rural community of Senegal; Sastry (1987) also presented a hazard model
with nested frailty to control for unobserved family and community effects in data from
Brazil. More recently, Kuate-Defo (2001) estimated a model for hierarchically clustered
data and applied it to child survival in Cameroon.

The model parameters and the distribution for the random effects were generally es-
timated via the Expectation-Maximization (EM) algorithm (Manda, 2001; Sastry, 1987;
Curtis et al., 1993; Guo and Rodriguez, 1992). The EM algorithm is an iterative method,
which heavily relies on the choice of starting values. Hence, it may converge toward a local
maximum instead of the global one (Sinha and Dey, 1997). To circumvent this problem,
a full Bayesian approach, which uses Markov Chain Monte Carlo methods, can be used.
Recently, Bayesian frailty models have been developed successfully for child survival data
in Mali (Gemperli et al., 2004), Minnesota (Banerfee et all., 2003) and Malawi (Bolstad
and Manda, 2001). Kandala et al. (2002) also used Bayesian approach to analyze the de-
terminants of undernutrition in Malawi, Tanzania and Zambia. Unlike the EM algorithm,



the Bayesian approach avoids the computation of cumbersome high-dimensional integrals
(Manda, 2001).

So far no author studied demographic characteristics through joint modeling of mean
and variance. But in general the positive observations mainly belong to exponential family
where mean and variance may have certain relation, and the variance may not be con-
stant. Das and Lee (2008a, 2008b) examined quality improvement data with non-constant
variance, and analyzed properly. In statistical literature, models are mainly focused on
the mean, so that the modeling of the dispersion has often been neglected. The goal
of this work is to investigate family heterogeneity in child mortality data from Bihar,
through joint generalized linear models (JGNL). In this paper we propose to use the joint
modeling of mean and dispersion in children survival times, and many social parameters
have been detected in its mean and variance model. We rely on Indian survey data of
National Family Health Survey-2(NFHS-2) in 1998-1999 from Bihar State of India. In
India Bihar is one of the most poor State, and we analyze the survival times of children
of that State.

2. Log-normal and gamma models with constant variance

In regression models for positive observations analysis can often be based on either
the log-normal or the gamma model. There is a well known correspondence between
multiplicative regression models and additive models of their logarithms. In classical
linear models, it is assumed that the variance of the response (Y) is constant over the
entire range of parameter values. When the variance increases with the mean we may
consider a model with the constant coefficient of variation:

Var(Y) = o® g,

where o is the coefficient of variation of Y and py = E(Y). In generalized linear models
(GLMs; McCullagh and Nelder, 1989) the gamma model satisfies the mean and variance
relationship above. For small o, the variance-stabilizing transformation, Z = log(Y’), has
approximate moments

E(Z) =logpy — 0%/2 and Var(Z) ~ o’

If the systematic part of the model is multiplicative on the original scale, and hence
additive on the log scale, then

Yi=pve (=1,2,...,n) (1)

with
n; = log py, = l"ﬁﬂ =fo+zanfr+..... + Ziphp



and {¢;} are independent identically distributed (IID) with E(¢;) = 1. In GLMs py; is
the scale parameter and Var(e;) = o2 is the shape parameter. Then

Zi=logYi=pz +96 (i=1,2,..,n) (2)

with
Mz, = [B() + E{log(ez)}] + xilﬁl + ... + -Tipﬁp

and {0; = loge; — E{log(e;)}}’s are IID with E(6;) = 0.
Conversely, if Y; follows a log-normal distribution, i.e. Z; ~ N(uz,,c?) then

py; = E(exp Z;) = exp(uz, + 0°/2) # exp(uz)-

Thus, with the exception for the intercept term, the remaining parameters 31, s, ...., 5,
can be estimated either from the constant coefficient of variation model (1) or linear model
for the transformation of the original data to log scale (2). The intercept parameters in
models (1) and (2) are not the same, but they will often be unimportant in practice: see
discussion in Myers et al. (2002; page 169).

Firth (1988) gave a comparison of the efficiencies of the maximum-likelihood (ML)
estimators from gamma model (the constant coefficient of variation model) when the
errors are in fact log-normal with those of the log-normal model when the errors have
a gamma distribution. He concluded that the ML estimators from the gamma model
perform slightly better under reciprocal misspecification. For small o2 it is likely to be
difficult to discriminate between Normal-theory linear models for log Y and gamma-theory
multiplicative models for Y.

3. Multiplicative models with non-constant coefficient of vari-
ation

If 0% is not constant, i.e. ¢; is not identically distributed with a common E(loge;),
parameter estimates from one model may have no interpretation on the other model. For
analysis of data from quality-improvement experiments the aim is to minimize variance
using covariates while controlling mean to the target. Thus, in the analysis of the data
from quality-improvement experiments, o2 is often not constant. For these situations,
Lee and Nelder (1998, 2003) proposed to use joint GLMs (JGLMs) to allow for struc-
tured dispersions. A detailed discussion on JGLMSs is given in Lee, Nelder and Pawitan
(2006): see also Qua, Tan and Rybicky (200), Park and Lesperance (2003) and Das and
Lee (2008a, 2008b).

Consider a JGLM for the multiplicative model (1)
E(Y;) = wy;,, and Var(Y;) = oy.py,,
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where
i = log(py;) = ziBy, and & =log(oy,) = gy, (3)

where g; is the row vector of the model matrix used in the dispersion model. The ML
estimators for fy are obtained by maximizing the log-likelihood

£y(0) = Z log f (y:,9) (4)

and restricted ML (REML) estimators for 7y are estimated by maximizing the (log)
adjusted profile likelihood of Cox and Reid (1987) and Lee and Nelder (1998)

pay (y(0)) = {£,(0) — {log det(E(-06;(0)/0By)/2m)}/2} g, 5. - (5)

The whole estimation process is done iteratively by using two interconnected iterative
weighted least squares (Lee et al., 2006).

Consider a JGLM for the log normal model (2)

E(Z) = pg,, and Var(Z) =o%,

3

where
Hz; = fﬂfﬂz, and & = log(a%i) = gf’YZ- (6)

The ML estimators for 87 under the log-normal model are obtained by maximizing the
log-likelihood

6(0) = Z{log f(z,0) — =i} (7)
and REML estimators for vz are estimated by maximizing the adjusted profile likelihood
P, ((0)) = {4(0) — {log det(E(-0¢;(0)/05%)/27)}/2} 5,_5,. (8)

where —z; = log |dz;/dy;| = —logy; is logarithm of Jacobian of the transformation.

For gamma model the Akaike information criteria (AIC) is
AIC = —2£,(0) + 2p,,

where p, is the number of parameters in the gamma JGLM and for log-normal model the
AIC is
AIC = —24,(0) + 2p,,

where p; is the number of parameters in the log-normal JGLM. If we are comparing
models with the same number of parameters (p, = p;) then we need only compare the
maximized likelihoods. To compare models with different scales of response variables (y
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for the gamma model and log y for the log-normal model) we need the Jacobian term in (7).
4. Data and covariates

Description of data: The National Family Health Survey, Bihar 1998-99: India’s
first National Family Health Survey(NFHS-1)was conducted in 1992-93.The Ministry of
Health and Family Welfare(MOHFW)subsequently designated the International Insti-
tute for Population Sciences(IIPS), Mumbai, as the nodal agency to initiate a second
survey (NFHS-2),which was conducted in 1998-99.An important objective of (NFHS-2 ) is
to provide state-level and national-level information on fertility, family planning, infant
and child mortality, reproductive health, child health, nutrition of women and children,
and the quality of health and family welfare services. Another important objective is to
examine this information in the context of related socioeconomic and cultural factors.
NFHS-2 used three types of questionnaires: the Household questionnaire, the Woman
Questionnaire, the Village Questionnaire. The Woman Questionnaire collected informa-
tion from ever-married women age 15-49 who were usual residents of the sample household.
This questionnaire included questions relating to respondent’s background, the details of
births which had occurred to her during the last three years, and practice of contracep-
tion. The Child Questionnaire was designed to record details of antenatal care, details of
delivery, breastfeeding, and post partum amenorrhoea, immunization and health care for
the two most recent births occurred to each eligible woman during three years preceding
the survey.

Description of covariates and levels:

For our study, we have used the data on place of residence, religion, caste, education of
the mother and place of delivery and some anti-natal and post-natal care etc. for those
children who had died. The covariates are categorised according to the following levels.

Place of residence : Urban (1) and Rural (2).

Religion : All religions except Muslim (1) and Muslim (2).

Caste : Scheduled caste and Scheduled tribe (1), Backward classes (2) and general
classes (3).

Education of mother : Illiterate (1) and literate (2).

Sex of the child : Male (1) and female (2).

Birth order no. of the child : 1 for eldest and so on.

Tetanus injection befor child birth : No (1), at least one (2).

Place of delivery : At home (1) and hospital or equivalent (2).

Whether recieved BCG or not : No (1) and yes (2).

Similar categorisations for DPT1, Polio-1, DPT-2, Polio-2, DPT3, Polio-3, Measles and
Polio-0.

Breast feeding : Never brestfed (1) and otherwise (2).



5. Analysis

Recently, log-normal and gamma models (Myers et al., 2002) are of interest in fitting
data arising from quality-improvement experiments. In this section, we analyze the sam-
ple data (NFSH-2) of survival times of children in Bihar by using structured dispersion.

In NFSH-2 data, there are many covariates and factors which are presented in Section
4. For factors we take a constraint that the effects of the first levels in the factors are
zero. That is we take the first level of each factor as the reference level by taking the
estimate of the effect of the first level as zero. Suppose that «o; for i = 1,2, 3 represents
the main effect of A. We take &; = 0, so that &, = &y — &1. For example the estimate for
the effect A, means the effect of difference between the second and the first levels in the
main effect A, i.e. & — &;. The selected models have the smallest Akaike information
criterion (AICs) value in each class. Because AIC selects a model which minimizes the
predicted squared error loss (Hastie et al., 2001, p. 203), it is not necessary that all the
selected effects are significant. We retain some insignificant effects in the model in order
to respect the marginality rule, namely that when an interaction term is significant all
related lower-order interactions and main effects should be included in the model (Nelder,
1994).

It was found in the exploratory data analysis stage that anti-natal and post-natal care
vaccinations such as various doses of DPT, Polio, Measles etc. were not significant and
hence those covariates are not included in our further analysis steps. We present the
following explanations with the remaining covariates.

From Table 1, the values of AIC of Log-normal model is 490.8, while Gamma model
is 532.19., so that AIC clearly choose Log-normal model. Again in the mean model of
Log-normal model (in Table 1), variable birth-order and factor education of the mother
are not significant, while they are significant in the mean model of Gamma model. So
it is expected to obtain better model than this under Log-normal distribution. In Table
2, we have presented our final models under Log-normal (with AIC 489.5) and Gamma
model (with AIC 532.19), and AIC selects the Log-normal model as the appropriate final
model.

In Figure 1(a), we plot the absolute values of residuals with respect to fitted values, and
in Figure 1(b), we plot the normal probability plot for the mean model in Table 2 of our
final selected Log-normal model. Figure 1(a) has a flat running means which indicates
that joint modeling of mean and variance (in Table 2) would be satisfactory, and also
Figure 1(b) does not show any systematic departures, indicating no lack of fit of our final
selected Log-normal model (in Table 2).

From Table 2, it is seen that the two factors namely place of delivery and whether
breastfed or not in the dispersion model to the levels (1, 1), the variance will be reduced.



Table 1: Results for mean and dispersion models of children survival times data from
log-normal and gamma fit

log-normal model gamma model
Covar. estimate s.e. t P-value estimate s.e. t P-value

Mean Const. —-1.31 0.37 -=3.57 0.00 —1.95 044 —-4.44  0.00
model mother’s age 0.04 0.02 2.19 0.02 0.10 0.02 4.42 0.00
birth order —-0.07  0.06 —1.32 0.19 —0.21  0.06 —3.45 0.00
educ-literate —-0.24 0.23 —-1.08 0.28 —0.58 0.25 —2.31 0.02
delivery-Hospital 0.40 0.23 1.74 0.07 0.70 0.25 2.81 0.01
breastfed-yes 1.04 0.17  6.04 0.00 1.47 0.18 7.96 0.00
Dispers. Const. -3.04 0.78 —=3.90 0.00 —-2.07 075 =276  0.01
model mother’s age 0.12 0.04 3.39 0.00 0.09 0.03 2.68 0.01
birth order -0.29 0.10 -2.99 0.01 —-0.23 0.09 -—2.48 0.01
delivery-hospital 0.85 0.33  2.57 0.01 0.54 0.32 1.67 0.09
breastfed-yes 1.43 0.30 4.81 0.00 0.77 0.30  2.59 0.01

AIC 468.80 4+ 2 x 11 509.19+2 x 11

So, we do not use above two factors in the mean model to adjust the mean because it will
affect the variance.
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Figure 1: For final Log-normal non-constant variance models (a) The Absolute residual
plots with respect to fitted values and (b) Normal probability for mean of children survival
times



Table 2: Final results for mean and dispersion models of children survival times data from
log-normal and gamma fit

log-normal model gamma model
Covar. estimate s.e. t P-value estimate s.e. t P-value

Mean Const. —1.09 031 -3.50 0.00 —-1.95 044 —-4.44  0.00
model mother’s age 0.02 0.01 1.90 0.05 0.10 0.02 4.42 0.00
birth order — — — — —-0.21  0.06 —-3.45 0.00
educ-literate — — — — —0.58 0.25 —-2.31 0.00
delivery-hospital 0.48 0.23 211 0.03 0.70 0.25 2.81 0.00
breastfed-yes 1.01 0.17  5.94 0.00 1.47 0.18 7.96 0.00
Dispers. Const. —-3.09 080 -3.84 0.00 —-2.07 075 =2.76  0.01
model mother’s age 0.12 0.04 3.28 0.00 0.09 0.03 2.68 0.01
birth order —-0.29 0.10 -2.91 0.00 —-0.23 0.09 -2.48 0.01
delivery-hospital 0.91 0.33 2.78 0.01 0.54 0.32 1.67 0.09
breastfed-yes 1.46 0.29 4.99 0.00 0.77 0.30  2.59 0.01

AIC 471.5+2 x 9 509.19+ 2 x 11

4. Concluding remarks

When there is heterogenity in the data the log-transformation is often recommended. If
o? is constant, i.e. ¢; is identically distributed with a common E(loge;), parameters from
the log-normal and gamma models have a common interpretation. We see for the analysis
of children survival times data (NFHS-2) that the simple log-transformation may not be
sufficient, so that a further structured dispersion model is required. Furthermore, with
structured dispersion there is no reason that the two models will give parameterizations
with a common interpretation. In all tables we found that the standard error of estimates
from two models are very similar, regardless of the presence of structured dispersions.
However, parameter estimates can be sufficiently different as to give different conclusions.
In such circumstances the AICs and model checking plots are useful in selecting a better
model. As log-normal and gamma models become popular for the analysis of life-time
data, further studies about the model choice are of interest. Thus, proper modeling of
structured dispersion is important for the analysis of life-time data giving the optimal set-
ting of interested parameters. From the two fitted final models (Log-normal and Gamma
in Table 2) significant social parameters effecting in the children survival times can be
easily determined.
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