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ABSTRACT 
 

Many important questions and theories in demography focus on changes over time, and 

on how those changes differ over geographic and social space. Space-time analysis has 

always been important in studying fertility transition, for example, but with few 

exceptions demographers have not used formal statistical methods to describe and 

analyze time series of maps.  One formal method, used widely in epidemiology, 

criminology and public health, is Knox's space-time interaction test.  In this paper, we 

discuss the potential of the Knox test in demographic research, and note some possible 

pitfalls. We demonstrate how to use familiar proportional hazards models to adapt the 

Knox test for demographic applications. These adaptations allow for non-repeatable 

events, and for the incorporation of structural variables that change in space and time. We 

apply the modified test to data on the onset of fertility decline in Brazil over 1960-2000, 

and show how the modified method can produce maps showing where and when 

diffusion effects seem strongest, net of covariate effects.   
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INTRODUCTION  
 

Space-time analysis has long been central to the study of population. Many of the 

important questions and theories in demography focus on changes over time, and on how 

those changes differ over geographic and social space. Perhaps the most prominent 

example is the European Fertility Project (Coale and Watkins 1986), which compiled 

sequences of maps for various indices of fertility and nuptiality across European 

provinces. These maps, especially one displaying estimated dates of onset for sustained 

decline in marital fertility, served as an important underpinning for the argument that 

cultural factors and the diffusion of information or attitudes toward family limitation 

were critical to the onset of fertility decline.   

Aided by advances in statistical methods and software, demographers are paying 

increasing attention to spatial patterns in population data. Several important papers have 

applied or adapted techniques from spatial econometrics (especially the ideas of Anselin 

1988 and Land and Deane 1992) to study area-level data. Examples include Baller et al. 

(2001), Baller and Richarson (2002), Land, Deane, and Blau (1991), and Tolnay (1995).  

With some important exceptions (Tolnay et al. 1996), spatial analysis in 

demography has omitted a time dimension and used purely cross-sectional statistics. In 

contrast, related fields such as epidemiology, criminology, and public health have 

integrated time more directly into statistical analyses of spatial event patterns. Recent 

research in these fields has used formal statistical methods, mainly from epidemiology, to 

study sequences of cross-sectional maps.   

The lack of crossover of epidemiological statistics into demographic research has 

several origins. Disciplinary differences in training, combined with a relative lack of 
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longitudinal spatial data in demography (at least until recently) explain part of the gap. 

Standard methods in space-time statistics can be also ill suited to demographic studies, 

which often involve longer periods than epidemiological or crime studies. Many 

epidemiological methods are appropriate for short time scales, over which it is reasonable 

to assume that background variables such as the population at risk or local socioeconomic 

conditions are constant. Such assumptions are often unrealistic in demographic studies, 

making direct application of standard epidemiological methods difficult or questionable.  

In this paper we try to bridge the gap between demographic questions and 

epidemiological methods. We begin by introducing a well established and still widely 

used formal method for studying space-time interactions in epidemiology -- the Knox 

test. We discuss its utility to demographers, and show how to adapt the Knox test in a 

specific demographic problem, looking for evidence of social contagion in fertility 

transition. These adaptations use Cox’s (1972) proportional hazards framework to model 

covariate effects that may otherwise yield false positives in a search for epidemic 

patterns, and to model survival processes with non-repeatable events. 

 
CONTAGION AND MAPPING 

Demographers and epidemiologists share an interest in understanding infection and 

contagion. In demography, ‘infection’ can be interpreted broadly to represent not only 

disease, but also the spread of an idea or behavior from one person to another – for 

example, adoption of a new contraceptive method. Many social processes mimic 

contagious diseases, and there is a substantial demographic literature suggesting that 

interpersonal contacts and infectious ideas are important components of population-level 

demographic change (Montgomery and Casterline 1996).  
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What would a contagious process look like on a map? In a statistical sense, if a 

process is infectious then rates are history-dependent: occurrence of an event increases 

the hazards of future events, particularly in nearby places and in the near future. An 

important implication of such rate dependence is that events generated by epidemics 

(biological or social) will tend to cluster in space and time.  

Spatial or temporal event clusters alone do not necessarily demonstrate contagion, 

however. A non-contagious process could have a strong spatial pattern if population is 

unevenly distributed over space, or if local factors imply differential risks across 

locations.  Similarly, temporal trends in population or other risk factors could generate an 

uneven distribution of events over time.  

The hallmark of contagion is second-order, or space-time, clustering.  A 

contagious process will generate a changing spatial distribution of incidence, with event 

clusters in different places at different times. Space-time interaction in event data is a key 

indicator of an infectious pattern, and it forms the basis of statistical tests for contagion. 

Figure 1 displays estimated fertility transition times for 502 regions of Brazil over 

1960-2000. Each panel corresponds to an intercensal period, with shaded areas 

representing regions undergoing transitions in that period. In Figure 1 and throughout this 

paper, we define a transition as either a 20% or greater decline in the total fertility rate 

(TFR), or a TFR below 4.5 at the end of the period. We discuss these data more carefully 

in later sections, but here they serve an example of strong space-time interaction. Note 

the clear temporal clustering (very few events before 1960 and after 1991), but also the 

clear space-time clustering (very different spatial distributions in the six periods). Strong 

space-time interaction is consistent with a contagious process, and indeed demographers 
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have used maps like Figure 1 as evidence for infectious spread of new fertility norms 

through social interactions (Coale 1973). 

[FIGURE 1 about here: transition times] 

Data such as those in Figure 1 do not make an open-and-shut case for the 

epidemic nature of demographic events, however. A skeptical demographer considering 

Figure 1 as evidence of ‘infection’ would have some serious reservations.  

Most importantly, the time period is longer than those in epidemiological 

applications. When examining events over periods of weeks or months, it is reasonable to 

assume that factors affecting relative risks across areas (resident populations, 

socioeconomic conditions, age structures, etc.) are approximately constant. In that case a 

changing spatial pattern of events over time, like that in Figure 1, provides good evidence 

for contagion.  

Our skeptical demographer would note, however, that constant relative risks are 

an extremely poor assumption for demographic processes like fertility transition. 

Demographic events often unfold over long periods, against a background of large 

changes in underlying conditions that differentially affect the risks of events in different 

locations. Space-time interaction in demographic events is evidence for contagion, in 

short, only if it is unexplained by space-time patterns in other relevant variables.  

 
KNOX’S FORMAL TEST FOR CONTAGION 
 
Event Maps, Event Clusters, and the Knox Statistic 

 We begin with notation. Consider a demographic process over a space S and time 

interval T.  In most applications S would be either a discrete set of spatial units such as 

{502 regions in Brazil}, or a continuous set of points such as {all (Latitude, Longitude) 
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pairs in Brazil}. Similarly T could be either a set of discrete times such as census dates, 

or a continuous interval such as [1960,2000].  

We observe n events, i=1…n, each with a known location si ∈S and time ti ∈T . 

One can create a drawing to indicate the n places and times, as in Figure 1, but for 

statistical purposes it is useful to define a map more abstractly, as a set:  

M s ti i i n= ={( , )} ...1  

Index numbers for events i=1…n are arbitrary because M is an unordered set.  In this 

paper we follow the convention of numbering events in chronological order, so that 

t t tn1 2≤ ≤ ≤L . 

Measuring event clustering requires definitions of spatial and temporal proximity. 

Following Knox (1964a, 1964b), construct dummy indicators for each pair of events (i,j):      

(1)  [ ] [ ]σ τij ijI I= =s ,s  are close in space t , t are close in timej ji i,
 

where the indicator function I[ ] equals one if the condition in brackets is true and zero 

otherwise. In general, researchers using the Knox test must define ‘closeness’ in space 

and time in the context of the particular study.1 In this paper we use a slight variant of the 

definitions used by Bocquet-Appel and Jakobi (1998) in a British fertility study: we 

define transitions in Figure 1 as close in space if they occurred in adjacent regions or in 

regions with centroids <100km apart, and as close in time if they occurred in the same 

intercensal period.  

                                                 
1 Examples in applied studies include [≤1 km apart, ≤59 days] in Knox’s (1964b) analysis of childhood 
leukemia, [<5 km, <1 year] by McNally et al. (2002) in a study of childhood brain tumors, [< 600 meters, 
<7 days] in Knox’s (2002) study of serial murders, [≤5 meters, ≤3 days] in Morisson et al.’s (1998) study 
of a dengue fever outbreak in a Puerto Rican town, and [≤100 km, “same intercensal period”] in Bocquet-
Appel and Jakobi’s (1998) analysis of British fertility transitions.  
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Given definitions for spatial and temporal proximity, for n events on a map there 

are N=n(n-1)/2 distinct event pairs, of which 

(2) N N Xs ij
j ii

t ij
j ii

ij ij
j ii

= = =
> > >
∑∑ ∑∑ ∑∑σ τ σ τ, ,    

are respectively close in space, close in time, or close in both. The value of X is the map’s 

Knox statistic, which is central to testing for contagion.  X is a simple index of space-time 

clustering, and in a contagious process it should be high relative to the level of spatial and 

temporal clustering (Ns and Nt, respectively). 

  As an instructive example, consider a map for n=10 new cases of a disease 

occurring over five possible locations S={A,B,C,D,E} at three possible time periods 

T={1,2,3}: 

M = { (E,1), (A,2), (A,2), (A,2), (A,3), (B,3), (C,3), (C,3), (C,3), (D,3) } 

For this map the first event was in location s1=E at time t1=1, the second was in s2=A at 

t2=2, and so on. There are n=10 events and 45 distinct event pairs. If we define events as 

spatially close when they occur in the same location, then Ns=9 for this map, because 

event pairs 2&3, 2&4, 2&5, 3&4, 3&5, 4&5, 7&8, 7&9, and 8&9 share locations. 

Analogously, if events are temporally close when they occur in the same period, then 

Nt=18.  Under these definitions, X=6 of the 45 event pairs (2&3, 2&4, 3&4, 7&8, 7&9, 8&9) 

are close in both space and time. 

 

Permutation Maps 

 The main question for detecting contagion is whether the observed space-time 

clustering in a map is high, given the levels of spatial and temporal clustering. For 

example, is X=6 high for a map with n=10, Ns=9, and Nt=18? One way to answer this 
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question is by comparing the Knox statistic X for the realized map (M) to the Knox 

statistic for another map (M*) with the same event locations {s1…sn} and times {t1…tn}, 

but different pairings of locations and times.  If the observed map M has a higher Knox 

statistic X than most random pairings, then there is evidence of space-time event 

clustering, and contagion is more likely.  

Generating an alternative map with identical {s1…sn} and {t1…tn} is 

straightforward. Each possible pairing of locations and times corresponds to a different 

permutation π of the indices 1…n.  Using the standard notation (i) to represent the ith 

element of the permutation, one can construct M*(π), the alternative map for a 

permutation π=[(1)…(n)], by pairing reordered locations{s(1)… s(n)} with the original 

times {t1…tn}. Intuitively, a permutation map is simply a reshuffling of the n event 

locations, holding the event times constant. 2 For instance, one possible permutation of 

our example map is π=[4,8,1,5,10,2,9,7,6,3], in which case the reordered locations are 

{ s(1), s(2) , s(3) … s(10) } = { s4, s8, s1 … s3} = { A, C, E, A, D, A, C, C, B, A } 

and the reordered map is 

M*(π) = { (A,1), (C,2), (E,2), (A,2), (D,3), (A,3), (C,3), (C,3), (B,3), (A,3) } 

Like the original M, the permutation map M*(π) has Ns=9 and Nt=18. These 

equalities happen by construction, because both maps have the same marginal 

distributions of event locations and event times.  Unlike the X=6 original map, however, 

space-time clustering in M*(π) is only X*(π)=2. This particular π is only one of 10! > 3.6 

                                                 
2 Pairing reordered locations with original times is arbitrary. The reverse process, with original locations 
and reordered times, produces an identical set of permutation maps. Keeping times in chronological order 
simplifies notation when discussing survival processes, because (1)…(n) represents the order in which 
failures happen – first location s(1), then s(2), and so on. 
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million possible permutations, but if this result is typical it suggests that map M has a 

high level of space-time clustering.  

 

The Knox Test 

 The Knox test formalizes the comparison with permutation maps, by considering 

the distribution of the space-time clustering statistic X*(π) across all possible pairings of 

observed event times and places. The strength of evidence for space-time clustering can 

be represented by a p-value for the observed Knox statistic X: 

(3) [ ] [ ]p X X* for a random permutation  X L I X X0 0( ) Pr ( ) ( )*= ≥ = ≥∑ π π
π

     

where the sum is over all n! possible permutations π, and L0(π) is the probability of 

particular permutation under the null hypothesis of no contagion. A small value such as 

p < .01 means that the Knox statistic X is unusually high and the observed map gives 

strong evidence for space-time interaction in event rates.   

The standard Knox test derives the p-value in Equation 3 by imposing a strong 

mathematical assumption. Specifically, one must assume that an absence of contagious 

effects implies constant relative risks (CRR). CRR requires that all local risks change by 

the same multiplicative factors at each moment. For example, if event risk is twice as 

high in location A as in B at the start of the study period, it must remain twice as high at 

all times during the study. As a corollary to CRR, if locations A and B both have positive 

event risks at time t=0, then there can be no later time at which A has zero risk and B has 

positive risk.  
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The CRR assumption guarantees that all map permutations π are equally likely in 

the absence of contagion (see Appendix), so that L0(π)=1/n! for every permutation and 

Equation 3 becomes 

(4) [ ]p X
n

I X X0

1
( )

!
( )*= ≥∑ π

π
   

 Analysts have used Equation 4 to perform Knox tests in two ways. First, the 

equation allows elegant analytical approximations to the null distribution of X under CRR 

(Barton and David 1966; Kulldorff and Hjalmars 1999). More importantly for our 

purposes, it also makes Monte Carlo simulation easy. Although in practice n! is 

prohibitively large (e.g., 10! > 3.6 million, 100! > 10158), one can approximate the right-

hand side of Equation 4 by drawing a large number K of permutations independently and 

uniformly (i.e., all permutations are equally likely) and approximating with 

(5) [ ]$ ( ) ( )*p X
K

I X Xk
k

K

0
1

1
= ≥

=
∑ π     

This standard Monte Carlo estimate, typically performed over several thousand random 

permutations, is simply the proportion of sampled permutation maps with Knox statistics 

at least as large as X.  A small $ ( )p X0 means that the observed events have unusually high 

space-time clustering, thus providing evidence for an infectious process. 

Although it is strong, the CRR assumption is reasonable for repeatable-event 

processes like infections observed over short periods. However, the CRR assumption 

means that the standard Knox test is inconsistent with either (1) a demographic process in 

which changing covariates alter the relative risks in locations over time, or (2) a survival 

process in which events (such as fertility transitions) remove discrete locations from the 

risk set. We return to these concerns shortly. 
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Applications of the Standard Knox test 

 
Researchers have used the standard Knox test for many purposes. Bhopal et al. 

(1992) applied the test to find strong space-time interaction in cases of Legionnaire´s 

disease in Glasgow and Edinburgh. Samuelsson et al. (1994) detected space-time 

clustering in Swedish data, suggesting that infectious agents are partially responsible for 

insulin-dependent diabetes. Birch et al. (2000) reached the same conclusion for childhood 

leukemia. McKenzie et al. (2005) found evidence for epidemic patterns in suicides 

among mental health patients.  Machado-Coelho et al. (1999) found significant space-

time clustering in leishmaniasis incidence in Southeastern Brazil. The Knox test has also 

been used to show lack of support for associations between environmental hazards and 

health conditions, as in Morris et al.’s (1998) analysis of reported space-time clusters of 

Down’s syndrome in England and Wales. 

Several authors have suggested using Knox tests and space-time interaction 

patterns as early-warning systems.  These efforts include Knox’s (2002) analysis of 

space-time clusters in murders committed by a serial killer, and Tobin’s (2007) study of 

the spread of an invasive gypsy moth in the US Midwest.   

 In demography, the most important applications of the Knox test have been in 

studying fertility transitions. Bocquet-Appel and Jakobi (1998) analyzed the geographical 

pattern of fertility change in 78 counties of Great Britain between 1861 and 1901. They 

generated a sequence of smoothed maps of the Ig fertility index for the five census years 

between 1861 and 1901, and from those maps estimated the time at which each county 

began its fertility transition. They used standard Knox tests to investigate spatial diffusion 

of fertility control, and found strong evidence of space-time interaction in onset times 
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(p=.002 or .001, depending on the definition of spatial proximity). Thus, nearby counties 

tended to have similar onset times, as in an infectious process. Bocquet-Appel and Jakobi 

(1998) concluded that fertility decline in Britain had characteristics of a social epidemic.  

Applying a similar statistical test to India, with data for several hundred districts 

from 1961 to 1991, Bocquet-Appel and colleagues concluded that the fertility transition 

there did not exhibit strong epidemicity (Balabdoaoui et al. 2001; Bocquet-Appel et al. 

2002). Because space-time interaction is weak in the Indian maps, these researchers 

attribute fertility decline in India mainly to non-contagious processes, such as nationwide 

family planning policies. 

 
ADAPTING THE KNOX TEST FOR DEMOGRAPHIC APPLICATIONS  
 

While some analysts have used the standard Knox test in demographic studies, its 

assumptions are ill suited to processes that evolve over long periods with changing risks. 

In such processes the standard test is likely to bias the approximation in Equation 5 

downwards, making it too easy to conclude that a process is contagious. 

Simply put, the standard Knox test attributes to contagion any space-time 

interactions in the data, even those generated by changing risk sets or by changing local 

covariates. In either of these situations the CRR assumption is violated and the standard 

Knox test becomes more likely to yield a false positive for contagion.  

In the remainder of this paper we study a survival process for a set of discrete 

locations, each of which has at most one event. Such a process violates the CRR 

assumption because the risk set changes as the process unfolds, thus altering the relative 

risks of events in different locations (i.e., the risk of further events becomes zero once a 

location ‘fails’, while remaining positive in other locations).  
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 Even with these new complications, the essential logic of the Knox test remains 

valid: if observed X is in the upper tail of values for maps with the given spatial and 

temporal frequencies of events, then the map provides evidence of a contagious process. 

The novelty in survival or covariate models is that the CRR simplification does not hold. 

The absence of space-time interaction no longer implies that all event orders π are equally 

likely in the absence of contagion. In such models we can no longer sample uniformly 

from the n! permutations to generate simulated maps and X* values under the null. 

 Fortunately, the statistical theory of event order in survival models with covariates 

is well understood from the literature on proportional hazards models. If each of n units 

has a constant failure hazard of ρi and there is no contagion, then the probability that units 

fail in order π = (1)…(n) is 

(6) L i j
j Ri

n

i

0
1

( ) ( )
( )

π ρ ρ=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∈=
∑∏             

where R(i)={(i)…(n)} represents the set of units still at risk for the ith failure. By 

extension, if hazards change over time and are affected by local covariates z, but satisfy 

the proportionality assumptions of Cox (1972): 

(7) [ ]ρ γ β( , ) ( ) exp ( , )s t t z s t= ′   

then without contagion the probability of failures in order π = (1)…(n) is  

(8) { } { }L z s t z s ti i j i
j Ri

n

i

0
1

( | ) exp [ , ] exp [ , ]( )
( )

π β β β= ′ ′
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∈=
∑∏   

which is identical to Cox’s partial likelihood function (cf. Kalbfleisch and Prentice 1973, 

equation 2).  
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 To extend the Knox approach to survival processes with covariates, we use 

Equation (8) in two ways. First, we find the covariate effects $β  that maximize the 

likelihood of the observed event order on the map. This is a standard proportional hazards 

regression. Second, we use the estimated $β  to draw simulated orders π from the non-

uniform distribution implied by Equation (8).  

This new procedure models the covariate effects in the Knox statistic X, and 

compares the observed statistic to a null distribution of X* values that are similarly 

affected by covariates. The modified test allows us to build into the Knox simulation the 

predicted effects of covariates on (s,t) pairings. By drawing π values from an appropriate 

non-uniform distribution, we weight draws of X*(π) toward pairings of event locations 

and times that are more likely to occur, given the observed patterns in covariates. The 

result is a test that is better adapted than the standard Knox test to demographic data, with 

lower bias and lower probabilities of false positives for contagion. Note that the standard 

Knox test  (β=0; no covariate effects) is a special case of the modified test. 

 

DATA  

As an illustration, we use Brazilian Demographic Census microdata from 1960, 

1970, 1980, 1991, and 2000 to calculate fertility rates and socioeconomic indicators for 

each of 502 subnational regions on each census date.  The regions have unchanging 

boundaries, and are identifiable from the geographic codes on all five censuses. Data 

come from long-form questionnaires that collected information on births to women of 

reproductive age. Potter, Schmertmann, and Cavenaghi (2002) provide a full description 

of the estimation procedures.  
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We defined pairs of regions as close in space if they were adjacent on the map, or 

if the distance between centroids was less than 100 km. Brazil’s continental scale and 

uneven population distribution create some large and sparsely populated regions in the 

North and West. Our definition of spatial proximity compromises between 

adjacency/shared borders (which would omit from the ‘close in space’ pairs close-

together but non-adjacent regions in the South) and using distance (which would omit 

adjacent regions in the North whose centroids are far apart. With 502 regions there are 

125751 distinct pairs of regions, of which Ns=1797 are ‘close in space’ under this 

definition. 

We classify a region as having had a fertility transition if either of two conditions 

is satisfied in a census year: TFR < 4.5, or TFR fell by more than 20% in the previous 

intercensal period. The typical definition of onset is a 10% fall in fertility (Coale and 

Treadway 1986; Guinnane, Okun, and Trussell 1994). We chose the stricter criterion 

mainly because we are using TFR estimates that are sometimes noisy for smaller, less-

populated regions. These transition times were displayed earlier in Figure 1. Table 1 

shows the distribution of transition times across periods, and Table 2 has example TFR 

data and transition times for nine regions.  

[TABLE 1 about here: transition times] 

[TABLE 2 about here: example transition data] 

We define transition pairs as ‘close in time’ if they happened in the same 

intercensal period. This yields a temporal clustering measure of Nt=38184. The observed 

Knox statistic for the map is X=1119, as shown in Table 3.   
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[TABLE 3: Knox contingency table] 

 Applying the standard Knox permutation test to the transition map, we find 

extremely significant space-time clustering: of 10000 uniformly-drawn Monte Carlo 

reorderings, none produced Knox statistics X*(π) as large as 1119.  Simulated X* values 

ranged from 475 to 624, with a median of 545. The estimated mean and standard 

deviation of the X* distribution were 545.4 and 19.4, respectively. The leftmost curve in 

Figure 2 illustrates the results from the standard permutation test, in the form of estimated 

p-values from Equation (5). The horizontal line at p=.05 intersects the curve at X=578, 

indicating that observed space-time clustering must exceed 578 to reject the null of no 

contagion at the 5% level.  The observed Knox statistic X=1119 on the far right easily 

meets this criterion, and in fact far exceeds all 10000 simulated X* values. 

 

Results: Modifying the Knox Test for a Survival Process with Covariates 
 

The standard test is biased in favor of finding contagion. It detects not only space-

time interaction caused by an epidemic process, but also space-time interaction caused by 

changing risks and risk sets. To address this problem we use the proportional hazards 

correction. We use end-of-period covariates as predictors for transition hazards, allow 

covariates to vary within regions across periods, and treat the two post-2000 transitions as 

right-censored observations. We include five time-varying covariates – percent of 

households in the region with electricity, average education of adult women (in years), 

percent of women in the labor force, percent of the region’s labor force (both sexes) in 

the primary sector, and percent Catholic – in a proportional hazards model. Table 4 

shows the regression results. 



 17

[Table 4 about here: PH regression coefficients] 

Our interest lies in the overall explanatory power of the model rather than the 

individual coefficients. In this regard the regression does well. Predicting that the 32 

regions with the highest predicted risks would transition before 1960, that the 65 regions 

with the next-highest risk would transition during 1960-1970, and so forth, yields 

matching predicted and observed times for 325 of 502 regions (65%). In comparison, one 

would expect only 30.5% matching if simulated times were drawn in the same way 

without regard to predicted risk.  

Because socioeconomic covariates are clearly related to transition times, the 

space-time event clusters that contribute to the Knox statistic (e.g., the concentration of 

early fertility transitions in the South and Southeast) may result from spatial clusters of 

covariates (e.g., greater electrification in the South and Southeast in early periods) rather 

than from a contagion. To investigate the effects of contagion, net of covariate effects, we 

use the modified Knox test. As in the standard test, the first 32 simulated transitions are 

assumed to occur before 1960, the next 65 between 1960 and 1970, etc. However, in the 

modified test the sampling of π is non-uniform, with covariate levels affecting each 

region’s transition probability in each time period. This approach draws samples of 

discrete times that match the assumptions of the proportional hazards model, and also 

match the marginal distribution of t in the observed map. Matching both the model and 

the observed map is possible because the baseline hazard γ(t) is unspecified in the 

proportional hazards model in Equation (7).  The model therefore assigns a likelihood 

only to the order of events, with event times being arbitrary as long as they satisfy the 

ordering. 



 18

The modified Knox permutation test appears as the rightmost curve in Figure 2, 

together with the standard test reported earlier. Including covariates and shifting risk sets 

moves the null distribution higher by about 170 points. Mean X* over 10000 random 

maps goes from 545 (standard test) to 706 (modified test). In statistical terms this is a 

massive shift: with covariate effects, the mean Knox value for a random map shifts 

upward by 8.2 of the original distribution’s standard deviations (σ).   Similarly, the Knox 

value required for a significance level of p=.05 rises from 578 to 753 (+9.0σ), and for 

p=.01 rises from 593 to 774 (+9.3σ).  

The changes in Figure 2 illustrate two important points. First, standards of 

evidence for space-time interaction in the modified Knox test are much more stringent. 

Covariate effects could cause some of the space-time interaction captured by the standard 

Knox statistic, and the rightward shift of the curve shows that attributing all of the 

clustering to contagion would be a mistake. Second, the observed X=1119 is still highly 

significant in the modified test. In this data set, strong evidence remains against a null 

hypothesis of space-time independence in events, even after controlling for the included 

covariates and changing risk sets. 

We add one important caution. Our example shows that including the effects of 

space-time patterns in relevant covariates can dramatically raise the critical value in the 

Knox test, thus making a false conclusion of contagion much less likely. However, false 

positives are still possible if the list of covariates is incomplete. Both the standard and 

modified Knox tests answer the question “Is there evidence of space-time interaction in 

events beyond that explained by any included covariates?”. In the standard Knox test 

there are no covariates at all. In this paper we show how to account for covariate effects 
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that might be misinterpreted as contagion in the standard test. However, the same logical 

problem remains (albeit to a much lesser degree) in a modified Knox test: omitted 

covariate effects can still be misinterpreted as contagion. As in any regression model, 

failure to control for relevant covariates is a potential danger, and researchers should 

interpret test results within the context of the specific model.  

 

Sensitivity Tests 

  The Knox statistic and the Knox tests depend on arbitrary definitions of spatial 

and temporal closeness. Our example also depends on an arbitrary definition of fertility 

transition and on a grainy set of only six possible transition times.  In order to investigate 

the robustness of the example presented in Figure 2, we experimented with alternative 

definitions for fertility transition, and for the spatial and temporal proximity of transition 

pairs.  

All definitions yield essentially the same conclusions regarding contagion, and 

regarding the importance of covariate effects. Table 5 reports results from 36 

experiments. We used three possible transition definitions: [TFR < 4.5 at end of period or 

TFR decreased by at least 20% over the period], [TFR < 4.0 at end of period], or [TFR 

decreased by at least 10% over the period], in combination with six possible definitions 

of spatial proximity (third column) and two possible definitions of temporal proximity 

(fourth column).   

[TABLE 5 here – Sensitivity Tests] 

In each experiment we calculated the Knox statistic for the observed map under 

the given definitions (X). We then drew 1000 random values of X* from the standard null 
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distribution, assuming uniform map permutation probabilities.  Table 5 reports the 

standard deviation (σ), mean (μ), and 95th percentile for this standard distribution. 

Finally, for each set of definitions we drew another 1000 X* values from the modified 

null distribution with covariate effects. The rightmost column of Table 5 reports the 

upward shift in the 95th percentile of X* values, measured in standard deviations σ. Large 

shifts in this critical value represent much more stringent standards of sample evidence 

for rejecting the null hypothesis of no contagion. 

The baseline experiment, using the definitions we eventually adopted, appears in 

the first row of Table 5.  For this case we repeat the results from the 10000 Monte Carlo 

permutations already reported: the 95th percentile for the null distribution of X* shifts 

from 578 to 753, an increase of 9.0 standard deviations. Table 5 shows that such results 

are typical. Although the level of X varies with the choice of proximity definitions, the 

modified Knox test always requires much stronger statistical evidence than the standard 

Knox test. Indeed, the smallest upward shift in the 5% critical value in any of our 

experiments (Cases 26 and 32) was 4.0 standard deviations, and the average shift in the 

5% critical value was more than 10 standard deviations. In short, including effects of 

space-time patterns in covariates on the Knox statistic X appears to alter the Knox test 

radically, regardless of the definition of events, or of the specific definitions of spatial 

and temporal proximity between events.  

 
Results: Early and Late Fertility Transitions 
 

Our modified Knox test also provides a new way to analyze the map’s space-time 

interactions. Specifically, we can identify which regions had unexpectedly early or late 

fertility transitions, considering their socioeconomic conditions. We do this by comparing 
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each region’s observed transition time ti to the distribution of its simulated transition 

times {ti*(πk)} k=1…10000 across Monte Carlo samples. Such comparisons, when 

mapped, provide information about where and when the spatial interactions detected by 

the modified Knox test occurred.  

 In order to study early and late transitions, we define indicators for each region: 

[ ]
[ ]

E I t t

L I t t

i i i k

i i i k

= <

= >

*

*

( )

( )

π

π

in over 60% of samples

in over 60% of samples
 

Ei=1 if an area’s transition occurred earlier than one would have predicted from its 

covariate levels; Li=1 if the transition was unexpectedly late.3 Using this definition, 86 of 

502 transitions were early, 37 were late, and 379 were neither early nor late. Table 6 

shows the complete distribution of early and late transitions across regions and 

intercensal periods.  

[Table 6 about here] 

As examples, Table 7 below shows the distributions of simulated times t* for the 

nine regions shown earlier in Table 2. Each row of Table 7 contains the region’s 

distribution of simulated (covariate-adjusted) transition times across periods. Observed 

transition times for each region from Table 2 are indicated by shaded cells. The last row 

of Table 7 shows the marginal distribution of simulated transitions (which is identical to 

the expected percentages across each row in the standard Knox test without covariates). 

[Table 7 about here] 

Under this definition, for example, Uberlândia’s pre-1960 transition was earlier 

than expected, because 83% of its simulated transitions occur after 1960. In comparison, 
                                                 
3 The 60% threshold is arbitrary. The higher the threshold, the more unusual the observed transition time 
must be to qualify as an early or late outlier. We experimented with 50% and 70% cutoffs, and found that 
results are qualitatively similar to those we report here. 
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São Paulo’s transition during the same period was not early, because its socioeconomic 

development made it a likely candidate (47% of simulations).  The 1960s transitions in 

Frederico Westphalen and Goiânia were surprisingly early, as was the 1970s transition in 

Porto Velho (whose relatively low socioeconomic indicators suggested a 63% chance of 

an even later transition). Manaus’s 1980s transition and Balsas’s 1990s transition were 

late, because in both cases local socioeconomic changes predicted earlier events. The 

other three transitions in the table, like most on the map, were neither early nor late.  

[FIGURE 3 about here] 

Figure 3 maps the complete set of early and late transitions, thus illustrating some 

of the sites of transition clusters. By (imperfectly but effectively) filtering out effects of 

socioeconomic covariates, the map reveals that the surprisingly early transitions to low 

fertility were clustered in the far South, several bands radiating inland from the capital 

cities in the states of São Paulo and Paraná, in western Minas Gerais, in Western frontier 

regions, and in the state of Rio Grande do Norte around its capital, Natal. Late fertility 

transitions were less clustered, with concentrations mainly at the top edge of the map in 

the states of Pará (7 of 19 regions late) and Maranhão (11 of 19 regions late).   

 
DISCUSSION 
 

Demographers still debate how well socioeconomic changes can explain the 

timing of fertility decline, and how much the unexplained variation reflects contagious 

diffusion of new ideas and behaviors through social interaction. Maps have played an 

important role in these debates (Coale and Watkins 1986; Watkins 1986), but there has 

been little use of space-time statistical tests.  



 23

The Knox test is a potentially useful tool for demographers seeking to detect 

epidemic patterns in the frequency or timing of many types of events on maps. In this 

paper we apply the Knox test to the classic problem, by asking if regional fertility 

declines in Brazil show evidence of contagion.   

Our application demonstrates that demographers may have to adapt, rather than 

directly borrow, tests from epidemiology and spatial statistics. Brazilian development had 

a strong spatial pattern throughout our period of study, with large changes in 

industrialization, infrastructure, and education occurring first in the South and Southeast 

regions.   In effect, one must raise the standard of evidence in any statistical test, to 

account for spatial patterns and localized changes in socioeconomic variables that could 

create space-time clustering even in the absence of contagion.  Such adaptation will be 

important when covariates affect demographic events and the risk set changes through 

time, or when covariates change through time with their own spatial pattern.   

We began by recognizing from Figure 1 that fertility transitions clustered in 

different regions in different periods.  The standard Knox test finds very strong evidence 

of space-time interaction in the timing of these events.  We then generalized the Knox 

test to include covariates, using a proportional hazards model with several likely 

correlates of fertility decline that are available from census data.  Accounting for 

covariates raises the bar substantially (Figure 2), but not enough to reverse the finding of 

strong space-time interactions in the observed event rates. 

The modified Knox test indicates the presence of strong space-time interaction in 

our fertility transition data, well beyond that explained by the five covariates in the 

proportional hazard model.  One explanation is that the model is imperfect: it contains 
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only a partial list of relevant local variables, included covariates are measured with error, 

and in any case we would not expect a perfect fit to the timing data. Alternatively, the 

unexpectedly high space-time clustering of fertility transitions may be taken as evidence 

for social interaction.   

In a third step, we developed an additional way to analyze space-time interactions 

by identifying which regions had unexpectedly early or late fertility transitions, given 

their covariates. Such analysis is only possible in the modified version of the Knox test, 

because in the standard test without covariates the timing of decline is distributed 

identically in all regions (bottom row of Table 7). Figure 1 shows that the early 

transitions were in the South and Southeast, while late transitions occurred in the North 

and Northeast.  Given the early economic development in the South and Southeast, this 

space-time interaction sheds little light on whether social interaction or development 

drove fertility decline. In contrast Figure 3, showing the unexpectedly early and late 

transitions considering covariates, is much more informative.  Here, unexpectedly early 

transitions are not as concentrated in the South and Southeast, and include a considerable 

number in the Northeast and Central-West.   

Figure 3 generates some new questions about the history of fertility decline in 

Brazil.  What happened in places where fertility declined earlier than would have been 

expected?  Why did transitions begin late in some, but not all, parts of Northern Brazil?  

One possible explanation for the very earliest transitions (before 1960) in the South is 

that motivations for having fewer children and knowledge of family planning were ideas 

that spread at least somewhat independently of development.  These ideas may have 

spread through contact with other cultures and populations— for example, via migrants 
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from Europe or from neighboring Uruguay.  Pioneer regions may then have served as an 

example to neighboring Southern regions that reached lower fertility levels in the 

following decade.   

The explanation of low fertility as contagion seems plausible with regard to some, 

but not all, of the earlier than expected transitions in Figure 3.  The cluster of early 

transitions in the Northeastern state of Rio Grande do Norte apparently has a different 

cause. This state had an early, and reportedly quite effective, effort by a private family 

planning organization and the state government. The campaign delivered oral 

contraceptives in over 300 health posts, and gave over 40,000 educational talks about 

family planning to nearly a million people (Thomé 2006 ).  This effort could well have 

been responsible for fertility having declined in the 1970s in Rio Grande do Norte, when 

most of the rest of Northeast only experienced this transition in the following decade.   

These interpretations are, of course, speculative.  However, they demonstrate the 

power of looking at the timing of the fertility transition over a large number of relatively 

small geographic units, and adjusting for covariates as we have done in Figure 3. The 

modified test directs attention precisely to the space-time clusters that need explanation.   

Technical improvements in statistical tests for space-time data will not resolve 

long-standing debates regarding the nature of fertility transitions. However, we suggest 

that in this area, as well as in other demographic applications, appropriately adapted 

formal techniques from epidemiology can be powerful tools for generating interesting 

questions and highlighting phenomena that might otherwise pass unnoticed.   
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APPENDIX: EVENT RATES, PERMUTATIONS, AND LIKELIHOODS 

Map Likelihoods with Constant Relative Risks 
 

In a space-time point process the likelihood of the n observed events in a map M 

is (cf Baker 2004, equation 1): 
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where ρ represents the intensity or rate of events per space-time volume, conditional on 

the history of the process through time t. The integral represents appropriate (continuous 

and/or discrete) summation over the set of space-time combinations with positive risk, 

denoted R.  Risk could be zero at some (s,t) combinations – e.g., if location s were not 

monitored at time t, or if there were a failure at s before time t in a survival model – and 

any such (s,t) values are excluded from R. For a permutation map M*(π) the likelihood 

becomes  
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where the notation R(π) denotes the possibility that reordering the events could, in 

principle, change the risk set. 

 The CRR assumption behind the standard Knox test requires that, under the null 

hypothesis of no contagion, event rates must be separable into pure time and space 

effects. Denoting rates under the null hypothesis as ρ0, the CRR assumption is 

(A3)   tsstts ,)()(),(0 ∀⋅= αγρ  

where α(s) is the initial rate in location s at t=0. The common time trend γ(t) depends 

only on t (and possibly on events occurring prior to t; in this sense it may be a random 

function).  If rates were not separable in this way, then there would be at least one pair of 
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places for which relative rates change over time. CRR also implies that the risk set cannot 

change: ρ0(A,t)/ρ0(B,t) = α(A)/α(B), so that if locations A and B both have non-zero risks 

at t=0, they must both have non-zero risks at all times. CRR therefore ensures that 

reordering event times does not alter the risk set. 

Under CRR, risk sets R and local rates ρ must be identical for observed and 

reordered maps, making the integral terms identical in Equations (A1) and (A2). The 

likelihood ratio under the null hypothesis is therefore  
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where the last equality occurs because permutation alters the order of multiplication in 

the numerator and denominator, but not the product. Equation (A4) thus shows that under 

CRR all n! possible permutation maps (including the original map, π=[1,2,…,n]) must 

have identical likelihood L0(π) = 1/n!. 

 

Map Likelihoods with Covariates 
 
 A useful extension for including covariates in a non-contagious process is 

(A5)   [ ]),(exp)(),(0 tsztts βγρ ′=  

where γ(t) is a baseline time trend, β is a parameter vector, and z is a vector of covariates 

(cf. Diggle 1990,  equation 14). As in a typical regression model, inference is conditional 

on observed covariate values, so that z(s,t) is a non-random function. In a model with 

covariates, lack of contagion is no longer synonymous with CRR, because variations in 

z(s,t) can cause space-time interactions in rates. 
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This formulation intentionally mimics a proportional hazards model in which 

covariates affect event risks (Cox 1972). However, it is not necessary to assume a 

survival process in which events remove units (in this case, locations) from the risk set. 

We will use this flexibility in several ways in the discussion that follows. 

Combining equations (A5) and (A1) and factoring out common time trends yields 

an expression for the likelihood of a permutation map with covariates under the null 

hypothesis of no contagion: 
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Null Distribution of the Knox Statistic across Permutation Maps 

 A permutation map’s Knox statistic is X*(π)=X[M*(π)], so the p-value associated 

with an observed Knox statistic X is  
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With covariates, the likelihoods L0 are given in Equation (A6). In general L0 depends on 

the particular ordering π=(1)…(n), and expression for the null distribution in Equation 

(A7) cannot be further simplified. There are three special cases of interest, however, in 

which the distribution is more tractable. We discuss these in turn. 

 

Case 1: Constant Relative Risks (β irrelevant) 

 The first special case is that assumed by Knox (1964) in which local factors, such 

as population, change over the monitoring period in ways that leave relative risks 
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constant.  This is the CRR assumption, and if it holds (Equation A4) then all permutation 

likelihoods are identical.  

 In a model with covariates CRR requires extremely strong assumptions. 

Specifically, CRR holds only if (1) the risk set is unaltered by changing the order of 

events, and (2) covariates change so that for all permutations the likelihood ratio 
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This ratio equals unity for all permutations π if covariates are irrelevant (β=0), or if 

covariates change in very restrictive ways that leave the exponential term equal to zero 

under all permutations.  

 

Case 2: Constant Risk Sets and Shifting Populations (β known) 

 Kulldorff and Hjalmars (1999) explore a second special case that is important in 

demographic applications spanning long periods of time. They note that temporal shifts 

in the distribution of population across space could bias the standard Knox test in favor of 

finding non-existent epidemicity. Their proposed alternative test is complex, mainly 

because it does not condition on the marginal distributions of observed locations {s1…sn} 

and times {t1…tn}.  

 Our framework suggests an alternative solution to the problem of shifting 

population that is simple and arguably more consistent with the standard Knox Monte 

Carlo method. Specifically, the Kulldorff and Hjalmars (1999) problem can be expressed 

in a proportional hazards framework as a special case in which risk sets are unchanging, z 
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is a scalar equal to the logarithm of population, z(s,t)=ln N(s,t), and β=1. In this case, 
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In other words, a permutation of observed times and places is more likely if it allocates 

events to high-population cells. This immediately suggests a modified Monte Carlo 

strategy for the Knox test over K permutations drawn uniformly from the set of n! 

possibilities: 
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We will pursue this approach in another paper; we merely note here that it is another 

potentially interesting extension of the Knox method for demographic and 

epidemiological studies. 

 

Case 3: Discrete Locations and Survival Processes with Covariates (β estimable) 

 The third special case, which is the main focus of this paper, occurs with a 

survival process over discrete spatial areas. In such a model, each area has a single 

transition or failure time, after which it is removed from the risk set.  The permutation π 

in this case determines the order of transitions/failures, which is precisely the information 

used to estimate Cox’s (1972) proportional hazard model. In particular, in the model set 

out here, the likelihood of failures in order (1)…(n) under the null hypothesis of no 

contagion is (Cox 1972, equation 12; Kalbfleisch and Prentice 1973, equation 2): 
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where R(i) represents the set of areas {(i)…(n)} with failures on or after time ti. 

Permutation likelihoods in this case depend on covariate effects β, and on the pattern of 

covariates over time and space.  

 Our modification of the Knox test uses a Monte Carlo simulation in which map 

orderings that are more likely, given the observed histories of relevant covariates, are 

more likely to be sampled. Unequal-probability sampling of permutations is easy with the 

sample function in the R statistical language (Ihaka and Gentleman 1996), using 

probabilities ( )zβ′ˆexp  as arguments. With sampling of permutations proportional to their 

probabilities, the simple average 
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converges to p0(X) = Pr[ X* ≥ X | H0] as K increases.  

 Modified Monte Carlo procedures with covariate effects and unequal permutation 

probabilities are a key contribution of this paper. Standard Knox approaches, based either 

on analytical approximations or on simulations of the null distribution of X, are biased 

when covariates and risk sets change over the monitoring period. Such conditions are 

likely in demographic studies, and our modified procedures eliminate this source of bias.  
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Figure 1: Fertility Transitions by Decade, Brazil 1960-2000. Shaded regions had TFR < 4.5 by the end of the period, or had at least 
a 20% decline over the period.   
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Figure 2: Standard Knox test, and the modified test with covariate effects. 10000 Monte Carlo permutations. Observed X=1119. 
Median X*=545 in standard test, 705 in modified test. 5% significance level at X=578 in standard test, 753 in modified test. 
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Figure 3: Early (light grey) and Late (dark) Regional Fertility Transitions relative to Socioeconomic Conditions, Brazil 1960-2000. 
Early [late] transitions are those for which at least 60% of simulated transition times in the modified Knox test occurred after 
[before] the observed transition. 

 

 



 40

  
Table 1: Distribution of fertility transitions by intercensal period 
 

 Pre 
1960 1960-70 1970-80 1980-91 1991-00 

Post 
2000 

# Regions at Risk 3951 470 405 227 29 2 
# Transitions  32 65 178 198 27 2 
       
Period failure rate (%) 2 8 14 44 87 93 100 
Fraction of all transitions (%) 6 13 35 39 5 0.4 
 
Notes:  

1. 1960 data are unavailable for 107 of the 502 regions. 
2. Period failure rate = # Transitions / # Regions at Risk 

 
 

 
Table 2: Estimated period TFR and inferred transition times for selected regions 
 

 Period TFR  
Region 1960 1970 1980 1991 2000 Transition 
Porto Velho, RO -- 7.0  5.3*   3.4X*  2.5X* 1970-1980 
Manaus, PA -- 6.0 5.2   3.2X* 2.6X 1980-1991 
Santarém, PA -- 7.1 6.6   4.4X*  3.3X* 1980-1991 
Balsas, MA -- 6.0 6.0 5.1  3.6X* 1991-2000 
João Pessoa, PB 5.3 4.9   3.9X*   2.5X*  1.9X* 1970-1980 
Uberlândia, MG  4.5X  3.8X   2.9X*   2.2X* 1.8X Pre 1960 
São Paulo, SP  3.1X  3.0X  2.8X   2.1X* 1.9X Pre 1960 
Frederico Westphalen, RS 7.6  5.7*   3.9X*   2.9X*   2.2X* 1960-1970 
Goiânia, GO 4.9  4.2X   3.1X*   2.1X* 1.8X 1960-1970 
       
BRAZIL AVERAGE 6.0 5.8 4.9 3.4 2.6  
       
Notes:  

1. X indicates TFR < 4.5 (transition condition 1); * indicates an intercensal decline 
of >20% (condition 2). In our definition a transition has occurred if either 
condition holds. Post-transition cells are shaded.  
 

2. BRAZIL AVERAGE is the simple mean across all 502 regions, not population-
weighted. 
 

3. 1960 demographic census data are unavailable from any source for 107 
regions, primarily in the North. The 1960 average TFR on the bottom row 
excludes these 107 regions. For these regions we assume the earliest possible 
mortality transition was in 1960-70.  
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Table 3: Knox statistic for the fertility transition map 

Event pairs (i,j) 
Close in Space \ Close in Time NO (τij = 0) YES (τij = 1) 

NO (σij = 0) 86889 37065 

YES (σij = 1) 678 X = 1119 

 

 

 

 
Table 4: Proportional Hazard Regression Estimates for Fertility Transition 
 

 $β  exp( $β ) se( $β ) p 
Percent of Households with Electricity .039 1.039 .004 .000 
Percent of Labor Force in Primary Sector .016 1.017 .004 .000 
Percent Female Labor Force Participation -.018 0.983 .009 .047 
Average Years of Female Education .456 1.577 .085 .000 
Percent Catholic -.013 0.987 .007 .075 
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Table 5. Standard and Modified Knox Tests with Alternative Definitions of Fertility Transition, Spatial 
Proximity, and Temporal Proximity. Rightmost column shows the shift in the 95%ile of the X* distribution, 
measured in standard deviations, when using the modified (with covariate) test.  

 
 Proximity    

Standard X* distribution 
(without covariates) 

Modified 
(with covariates) 

Case2 Transition3 Space4 Time5 X Ns Nt σ μ 95%ile 95%ile Shift / σ 
1 <4.5 | >20% 100km | 1lag same pd 1119 1797 38184 19.4 545 578 753 +9.0 
2 <4.5 | >20% 100km same pd 720 1184 38184 17.5 359 388 502 +6.5 
3 <4.5 | >20% 1lag same pd 878 1404 38184 17.2 426 456 593 +8.0 
4 <4.5 | >20% 250km | 2lag same pd 4116 7677 38184 44.2 2331 2403 3079 +15.3 
5 <4.5 | >20% 250km same pd 3433 6415 38184 52.7 1947 2039 2577 +10.2 
6 <4.5 | >20% 2lag same pd 2703 4770 38184 33.4 1447 1501 1962 +13.8 
7 <4.5 | >20% 100km | 1lag same | adj pd 1720 1797 92478 19.3 1322 1352 1507 +8.0 
8 <4.5 | >20% 100km same | adj pd 1141 1184 92478 20.1 870 902 998 +4.8 
9 <4.5 | >20% 1lag same | adj pd 1343 1404 92478 15.8 1033 1059 1181 +7.7 

10 <4.5 | >20% 250km | 2lag same | adj pd 7099 7677 92478 55.9 5645 5739 6317 +10.3 
11 <4.5 | >20% 250km same | adj pd 5967 6415 92478 71.0 4716 4840 5291 +6.4 
12 <4.5 | >20% 2lag same | adj pd 4445 4770 92478 35.0 3505 3563 3969 +11.6 
13 <4.0 100km | 1lag same pd 1017 1797 32138 18.6 459 489 717 +12.3 
14 <4.0 100km same pd 668 1184 32138 15.8 303 329 482 +9.7 
15 <4.0 1lag same pd 824 1404 32138 16.4 359 385 570 +11.3 
16 <4.0 250km | 2lag same pd 3737 7677 32138 42.5 1963 2030 2909 +20.7 
17 <4.0 250km same pd 3159 6415 32138 42.8 1639 1711 2467 +17.7 
18 <4.0 2lag same pd 2492 4770 32138 31.1 1221 1273 1859 +18.8 
19 <4.0 100km | 1lag same | adj pd 1703 1797 84090 20.4 1202 1236 1512 +13.5 
20 <4.0 100km same | adj pd 1121 1184 84090 20.5 791 826 1007 +8.8 
21 <4.0 1lag same | adj pd 1342 1404 84090 17.5 940 969 1194 +12.9 
22 <4.0 250km | 2lag same | adj pd 7117 7677 84090 56.8 5133 5230 6378 +20.2 
23 <4.0 250km same | adj pd 5973 6415 84090 68.5 4289 4399 5356 +14.0 
24 <4.0 2lag same | adj pd 4476 4770 84090 36.5 3190 3248 4002 +20.7 
25 >10% 100km | 1lag same pd 1070 1797 42808 20.2 611 645 759 +5.6 
26 >10% 100km same pd 694 1184 42808 18.4 404 434 507 +4.0 
27 >10% 1lag same pd 880 1404 42808 17.2 478 505 597 +5.3 
28 >10% 250km | 2lag same pd 4256 7677 42808 45.9 2611 2690 3142 +9.8 
29 >10% 250km same pd 3592 6415 42808 53.1 2186 2280 2663 +7.2 
30 >10% 2lag same pd 2732 4770 42808 33.4 1625 1680 1976 +8.9 
31 >10% 100km | 1lag same | adj pd 1751 1797 103805 15.9 1483 1510 1614 +6.5 
32 >10% 100km same | adj pd 1150 1184 103805 16.8 977 1006 1073 +4.0 
33 >10% 1lag same | adj pd 1373 1404 103805 13.7 1159 1181 1263 +6.0 
34 >10% 250km | 2lag same | adj pd 7411 7677 103805 43.7 6335 6407 6862 +10.4 
35 >10% 250km same | adj pd 6186 6415 103805 55.8 5294 5384 5755 +6.6 
36 >10% 2lag same | adj pd 4626 4770 103805 29.8 3938 3987 4261 +9.2 

            
AVERAGE OVER ALL 36 EXPERIMENTS        +10.4 
         
Notes: 

1. Vertical bars denote “or” conditions 
2. Case 1 results are from 10000 random maps, as described in the text. Cases 2-36 are from 1000 random maps. 
3. Transition definitions are in terms TFR at end of intercensal period, or % decline in TFR over period 
4. Spatial proximity between transitions in terms of distance between centroids, or number of spatial lags between regions 
5. Temporal proximity between transitions defined as “happened in same intercensal period”, or “same or adjacent periods”    
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Table 6: Distribution of Early and Late Transitions, by intercensal period 
 
 Observed Transition Time 
 Pre 1960 1960-70 1970-80 1980-91 1991-00 Post 2000 ALL
Early 24 31 31 0 0 0 86
Neither Early nor Late 8 34 147 189 1 0 379
Late 0 0 0 9 26 2 37
 
Total  32 65 178 198 27 2 502
 

 

 

 

Table 7: Simulated and observed fertility transition times for example regions. Observed transition 
times are shaded. Early [late] transitions are those for which at least 60% of simulated transition 
times in the modified Knox test occurred after [before] the observed transition. 
 
 Simulated Transition Times (% of samples) 
Region Pre 19601960-70 1970-80 1980-91 1991-00 Post 2000 Early/Late?
Porto Velho, RO 0 8 29 62 1 0 Early 
Manaus, PA 0 20 66 15 0 0 Late 
Santarém, PA 0 6 41 52 1 0 -- 
Balsas, MA 0 5 13 71 11 0 Late 
João Pessoa, PB 11 22 61 6 0 0 -- 
Uberlândia, MG 17 32 47 3 0 0 Early 
São Paulo, SP 47 32 20 0 0 0 -- 
Frederico Westphalen, RS 5 11 50 34 0 0 Early 
Goiânia, GO 13 27 58 2 0 0 Early 
        
        
ALL REGIONS1 6 13 35 39 5 0 -- 
       
Note:  

1. From Table 1. In a standard Knox test without covariates, every region would have this 
distribution of simulated transition times.  

 

 
 


