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1 Introduction

Traditionally human mortality is studied by comparing hazard functions. However, lifespan

distributions can also be characterized by their probability density. Thus, instead of modelling

trends in the hazards, we may study how the age-axis would have to be transformed so that

one age-at-death distribution conforms to another. In the simplest case the transformation is

linear, leading to an accelerated failure time (AFT) model. However, the assumption that all

cohorts postpone death or speed up their lives at a constant rate across the age range is too

simplistic for human mortality studies. In this paper, we generalize the AFT approach and

present a new model for comparing age-at-death distributions assuming only smoothness for

the transformation function.

2 Comparing age-at-death distributions

Figure 1 shows the age-at-death distributions, as derived from period life-tables, for Danish

women from age 30 to 110 in 1930 and in 2006. Data are derived from the Human Mortality

Database (2008). Instead of pure death counts, we use a period life-table approach for adjusting

the effect of birth cohort sizes in the age-at-death distributions. In this way, exposure population

is excluded in the approach.

To investigate the changes in mortality that lead to the different patterns we want to

transform the age-axis such that the two densities coincide. More specifically, we define one
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distribution as the target, with density f(y), and want to obtain the transformation function

y = w(x) so that the density of the other distribution, g(x), conforms to the target density on

the warped axis, i.e.,

g(x) = f(w(x)) · |w′(x)| . (1)
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Figure 1: Life-table age-at-death distribution of Danish females for the years 1930 and 2006.

As mentioned, a linear w(x) which shifts and/or stretches the age-axis to conform one

distribution to another would be too simplistic for human mortality. Figure 1 clearly shows

this issue: for instance, the age-at-death distribution in 1930 is neither a shifted nor a stretched

version of the age-at-death distribution in 2006. On the other hand, parametric assumption of

the transformation function for the age-axis will impose too much structure on the model and

may lead to misleading interpretation.

Following these considerations, we suggest freeing the transformation function w(x) from

any rigid shape, assuming only smoothness. This approach leads to a nonlinear transformation

of the independent axis which is commonly called “warping”. On the other hand, we deal with

a transformation of time as in the AFT models. Hence we call our model Warped Failure Time

(WaFT) model.

3 The Warped Failure Time Model and its estimation

Our model is not restricted to any particular target distribution, f(x; θ), and it will mostly be

estimated from data. In the following we consider the parameters θ fixed. The observed death

counts at age xi are denoted by yi and are realizations from Poisson variables with E(yi) = µi.

The values µi derive from the density g(x) that generated the data as in equation (1). The
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proposed model is

µi = E(yi) = γ · f(w(xi; α), θ) · ∂

∂x
w(xi; α)

= γ · f(w(xi; α), θ) · v(xi; α) , (2)

where γ is a normalizing constant such that
∑

i yi =
∑

i µi and f(·) is the target density. The

warping function w(xi; α) is to be determined such that, after transforming the age-axis, the

density matches the specified target.

To allow for arbitrary shape of w(x), we represent the warping function by a linear com-

bination of B-splines and a penalized Poisson likelihood approach is implemented to estimate

the coefficients α in equation (2). Concisely, we adapt the iteratively reweighted least squares

(IWLS) algorithm and follow a P -spline approach (Eilers and Marx, 1996) for smoothing the

warping function w(·). In matrix notation:

(X̃ ′W̃ X̃ + λP )β = X̃ ′W̃ (W̃−1(y − µ̃) + X̃β̃)

where P =

(
0 0

0 P̆

)
and P̆ = D′

dDd . The matrix Dd calculates d-th order differences. The

model matrix is X̃ = [1, Q̃], the coefficient vector β′ = [ln(γ),α′] and the matrix W̃ = diag(µ̃).

The matrix Q includes the B-splines basis and its differences. The target function f(·) with its

derivatives are also incorporated in Q. Via the value of the parameter λ the smoothness the

warping function can be controlled. λ is optimized by minimizing the Bayesian Information

Criterion. Camarda et al. (2008) presents a detailed description of the model and its penalized

Poisson likelihood estimation.

4 Applications

4.1 Gompertz target distribution

For the Danish age-at-death distributions introduced in Section 2, we use the year 2006 as the

target density. Dealing with mortality over age 30, a possible choice for representing age-at-

death distribution in year 2006 is the Gompertz distribution. The estimated parameters for

the Gompertz are θ̂ = (â, b̂)′ = (1.14e−5, 0.11)′ .

Fixed the target Gompertz distribution for year 2006, the WaFT model has been used to

warp the age-axis and fit the Danish age-at-death distribution observed in 1930. Figure 2

(left panel) shows the target distribution with its Gompertz estimates as well as the fitted

values from the WaFT model. The BIC profile for this example is presented in the right panel

of Figure 2, and the smoothing parameter λ was selected equal to 47.9. Figure 3 shows the

resulting transformation function w(x, α̂) along with its derivative. The identity transformation

is indicated by a dashed line. The warping function is clearly nonlinear, that is, neither a simple
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shift nor a uniform scaling of the age-axis can map one density on to the other. This feature

can be easily acknowledge looking at the derivative of the warping function.
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ŷi

λ̂ = 47.9

1.0 1.5 2.0 2.5

440

450

460

470

480

490

500

log10(λ)

B
IC

(λ
)

Figure 2: Left panel: Life-table age-at-death distributions for the Danish data over age 30.
Data from 2006 are fitted with a Gompertz function and used as target distribution. Data
from 1930 are estimated with the WaFT model. Right panel: BIC profile.

4.1.1 Non-parametric target distribution

Often the Gompertz distribution with only two parameters cannot properly describe more

complex patterns of adult mortality. Alternatively we can use a non-parametric estimate of the

target distribution to improve the model. Again we choose a P–spline approach to obtain the

estimated target density (Eilers & Marx, 1996).

The Gompertz distribution plays a prominent role in the study of adult human mortality,

but sometimes such parametric distribution cannot properly describe more complex patterns

of adult mortality. Instead of searching alternative parametric distributions for portraying the

target density, we can free the WaFT from any parametric assumption even regarding the

estimation of the target distribution. In particular, we estimate a target distribution using a

P -spline approach introduced by Eilers and Marx (1996). Once a target distribution is fitted,

the WaFT model can be easily adopted to estimate the warping function.

Figure 4 shows outcomes from a P -spline approach for the Danish women above age 10 over

which Gompertz distribution with only two parameters is likely inappropriate.

Figure 4 presents also the fitted values from the WaFT model. Since we do not assume any

parametric distribution, the WaFT model actually warps the age-axis such that the Danish age-

at-death distribution in 1930 conforms the age-at-death distribution in 2006. Figure 5 shows
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Figure 3: Outcomes from the Danish female population over age 30. Left panel: estimated
warping function w(x, α̂). The identity transformation is indicated by a dashed grey line.
Right panel: estimated derivative of the warping function. The grey dotted lines represents
any simple shift transformation of the x-axis.
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Figure 4: Life-table age-at-death distributions for the Danish data over age 10. Non-parametric
P -splines estimate for the target distribution (year 2006). Data from 1930 are estimated with
the WaFT model.
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both the fitted transformation function and its derivative. Also in this case, the derivative

clearly shows that a simple linear warping of the age-axis would not be enough to account for

the differences in the age-at-death distributions between these two years.
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Figure 5: Outcomes from the Danish female population over age 10. Left panel: estimated
warping function w(x, α̂). The identity transformation is indicated by a dashed grey line.
Right panel: estimated derivative of the warping function v(x, α̂). The grey dotted lines
represent any simple shift transformation of the x-axis.

5 Interpretation and outlook

In this abstract, we briefly present a new approach for dealing with the estimation of a nonlinear

transformation to align age-at-death distributions. The proposed WaFT model is a rather

general tool and brings together the ideas of warping and smoothing. Starting from a specific

target distribution, the model allows estimation of the warping function of the age-axis that

can map one distribution onto the other.

The only assumption that is made about the warping function is smoothness. By using a

P -spline approach, not only can the warping function be estimated, but we may also directly

express its derivative via B-splines. A penalized Poisson likelihood approach is then employed

to estimate the model. The target function can be estimated either with parametric or non-

parametric approaches which provides to great flexibility.

The fitted warping function can be easily interpreted as the differences in aging between

the two groups or the gain (or loss) in longevity. Differently, we can use the warping function

as a measure of postponement of dying of a population with respect to the target one. In

other words, in Figure 5 (left panel), one can consider that, on average, a 10 years old Danish
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female in 1930 would have postpone her death to age 70 if she would have experience mortality

conditions of 2006.

Furthermore, the derivative of the warping function describe the rate of change of the

mentioned process and we clearly see that different ages postpone death or speed up their lives

at different rate across the age range. Explicitly, since x represents age, the first derivative of

of the warping function can be interpreted as speed of aging at each age x. Moreover, the non-

linearity of the warping function shows how the WaFT model extend the common accelerated

failure model which is too simplistic for capturing mortality dynamics.

The WaFT model applied on actual populations shows that the fitted warping function

gives reasonable and interesting outcomes. Comparisons between countries and sexes are also

possible as well as applications on non-human data. The WaFT model is also appropriate for

comparison of any two densities. We therefore envision alternative applications of the WaFT

model in which nonlinear transformation of the x-axis is a suitable and reasonable idea.

Furthermore, in case of mortality data, we plan a generalization of the WaFT can account

in a two-dimensional setting. Warping functions between two subsequent years are expected

to change smoothly. Therefore, one can cope with a sequence of warping functions over time

by an additional penalty that controls the temporal pattern in the age-axis transformation.

Two-dimensional smoothing methodology such as presented by Currie et al. (2006) can be used

to generalize the WaFT model to two dimensions, as well.
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